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We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum
correlations. To achieve it, we propose a circuit quantum electrodynamics scenario involving super-
conducting quantum interference devices, cavities, and superconducting qubits, also called artificial atoms.
Our results predict the generation of highly entangled states for two and three superconducting qubits in
different geometric configurations with realistic parameters. This proposal paves the way for a scalable
method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.
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The phenomenon of quantum fluctuations, consisting of
virtual particles emerging from vacuum, is central to
understanding important effects in nature—for instance,
the Lamb shift of atomic spectra [1] and the anomalous
magnetic moment of the electron [2]. The appearance of a
vacuum-mediated force between two perfectly conducting
plates, known as the Casimir effect, is caused by a
reduction of the density of electromagnetic modes imposed
by the boundary conditions [3–5]. This leads to a vacuum
radiation pressure between the mirrors that is lower than the
pressure outside. It was also suggested [6] that a mirror
undergoing relativistic motion could convert virtual into
real photons. This phenomenon, called the dynamical
Casimir effect (DCE), has been observed in recent experi-
ments with superconducting circuits [7,8]. In the same
manner that the Casimir effect can be understood as a
mismatch of vacuum modes in space, the kinetic counter-
part can be explained as a mismatch of vacuum modes
in time.
A moving mirror modifies the mode structure of the

electromagnetic vacuum. If the mirror velocity v is much
smaller than the speed of light c then the electromagnetic
modes adiabatically adapt to the changes and no excitations
occur. Otherwise, if the mirror experiences relativistic
motion, changes occur nonadiabatically and the field can
be excited out of the vacuum, generating real photons.
Beyond its fundamental interest, it has been pointed out
that the DCE provides a mechanism to generate quantum
correlations [9–15]. In this sense, we may consider the
study of the DCE as a resource for quantum networks and
quantum simulations in the frame of quantum technologies.
In circuit quantum electrodynamics, DCE photons have
been created by modifying the boundary condition for the
electromagnetic field [7]. In a similar experiment, photons
have also been created by modulating the effective speed of
light [8]. Note that the emergence of the DCE physics in a
different quantum platform allows for other geometric

configurations and interaction terms, leading to a variety
of different physical conditions.
In this Letter, we investigate how to generate multipartite

entangled states of two-level systems, also referred to as
quantum bits (qubits), by means of varying boundary
conditions in the framework of superconducting circuits.
For pedagogical reasons, we illustrate our model with a
hypothetical quantum-optical system, shown in Fig. 1. It is
composed of two cavities that are coupled to independent
single qubits. These cavities share a partially reflecting and
transparent mirror, yielding the last interaction term of the
Hamiltonian in Eq. (1). We assume that the cavity-qubit
coupling strength is much larger than any decoherence rate
in the system. In this context, we introduce the key
concepts allowing the generation of highly entangled
two-qubit states, also known as Bell states [16], in circuit

FIG. 1 (color online). Quantum optical implementation of the
model of Eq. (1): two cavities with a common partially reflecting
mirror, each one containing a two-level artificial atom in the
strong-coupling regime. If the position and/or transmission
coefficient of the central mirror is time modulated, correlated
photon pairs are generated and entanglement is transferred to
qubits via the Jaynes-Cummings interaction.
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QED [17–19]. Later, we will consider the generation of
tripartite entanglement [20] and the scalability aspects of
our proposal to multipartite systems [21].
The Hamiltonian describing the system of Fig. 1 is

composed of the sum of two Jaynes-Cummings interactions
and a time-dependent coupling between the field
quadratures,

H ¼ ℏ
X2

l¼1

�
ωla

†
lal þ

ωq
l

2
σzl þ glðσþl al þ σ−la

†
lÞ
�

þ ℏαðtÞða†1 þ a1Þða†2 þ a2Þ: ð1Þ

Here, a†l, al are the creation and annihilation operators of
the bosonic modes representing the cavity fields, while σzl,
σ�l are the Pauli operators of qubits. The characteristic
frequencies of the two cavities are denoted by ωl, while the
qubit energies are ωq

l. The parameters gl and αðtÞ denote
the cavity-qubit and cavity-cavity interaction strength,
respectively.
In Eq. (1), the coupling between different cavity modes,

due to the overlap of their spatial distribution, is written in
its full form without performing the rotating wave approxi-
mation. While in optical cavities this overlap can be
obtained with a partially reflecting mirror [24], in circuit
QED it is commonly implemented using capacitors or
inductances shared by two or more resonators. The boun-
dary condition at the edge shared by the cavities is ruled by
the central mirror position and by its reflection coefficient.
Modulating these physical quantities results in a time
dependence of the cavity frequenciesωi and of the coupling
parameter α. When the effective cavity length is oscillating
with small deviations from its average value, we can still
consider the system as a single-mode resonator. In par-
ticular, if the cavity-cavity coupling parameter is a time-
dependent function, αðtÞ ¼ α0 cos ðωdtÞ with ωd ¼ ω1 þ
ω2 and α0=ωi ≪ 1, the interaction effectively turns into a
two-mode squeezing term (see below),

αðtÞX1X2 →
α0
2
ða†1a†2 þ a1a2Þ; ð2Þ

which generates pairs of entangled photons shared by the
cavities. By means of the Jaynes-Cummings interaction,
entanglement generated between cavities may be trans-
ferred to resonant qubits. In fact, we will prove below that,
under suitably designed conditions, maximal entanglement
(Bell state) between the two qubits may be attained.
Nowadays, quantum technologies [25] offer several

platforms to study fundamentals and applications of quan-
tum theory. In particular, superconducting circuits technol-
ogy [26,27] is a prime candidate to implement the model of
Eq. (1). In this framework, the cavities are constituted by
coplanar waveguides, working at cryogenic temperatures,
that are described by an equivalent LC circuit, as shown in
Figs. 2(a) and 2(b). The characteristic frequency of such

devices is in the 2–10 GHz microwave regime. Each cavity
can be coupled to a superconducting qubit built from
Josephson junctions (JJs) to access charge [28], flux [29],
or phase [30] degrees of freedom. Specifically, we propose
the use of transmon qubits which have low sensitivity to
charge noise and coherence times well above 10 μs
[31–33]. The moving mirror [23,34] that couples both
cavities (see Fig. 1) can be implemented by means of a
superconducting quantum interference device (SQUID)
[35], which behaves as a tunable inductance. A SQUID
is composed of a superconducting loop interrupted by two
JJs [see Fig. 2(a)], threaded by an external flux ϕext. The
latter allows a fast modulation of the electrical boundary
condition of cavities and their interaction. Notice that a
modulation of the magnetic flux threading the SQUID
induces a proportional variation of the effective resonator
lengths, while in the system of Fig. 1, moving the central
mirror results in an opposite change of cavity lengths.
By using off-the-shelf electronics, it is possible to

produce magnetic fluxes that oscillate at the cavity char-
acteristic frequencies. The upper limit to the speed of
modulation is imposed by the SQUID plasma frequency,
defined as ωp ¼ ð1=ℏÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ECEJ
p

, where EC is the charging
energy, EJ the Josephson energy, both associated with a
single JJ belonging to the superconducting loop. Beyond
this frequency, the internal degrees of freedom of the device
are activated and a more complex behavior appears. The

FIG. 2 (color online). (a) The model of Fig. 1 can be
implemented by means of two coplanar waveguides, grounded
through a SQUID, containing two superconducting qubits. The
blue lines represent two parallel strip lines of isolating material,
where the superconducting region between them constitutes the
coplanar waveguide. Each cavity interacts with a transmon qubit
that is denoted by a red dot. Different resonator lengths result in
distinct resonator frequencies. (b) Circuit diagram for the
previous scheme, where the cavities are effectively represented
by LC resonators. We assume two identical Josephson junctions
of the SQUID, while transmon qubits are constituted by two
Josephson junctions shunted by a large capacitance.
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external flux ϕextðtÞ injected into the device, which also
determines EJ, will be composed of the sum of a signal
oscillating at the driving frequency ωd and a constant
offset ϕ0, ϕextðtÞ ¼ ϕ0 þ Δϕ cos ðωdtÞ. We consider
nondegenerate resonators to avoid uncorrelated photon
generation at the cavity resonance frequencies, an
assumption that has been confirmed by a detailed quantum
mechanical analysis of the effective lumped circuit element
in Fig. 2(b) [21].
If the instantaneous resonant frequency of a given

resonator follows the time dependence ωðtÞ ¼ ω0þ
δω cos ðωdtÞ, cavity modes are well defined only under
the condition δω ≪ ω0. In our proposal, the frequencies of
the cavity modes are obtained by solving the transcendental
equation kd tan ðkdÞ ¼ L=Ls − Cs=CðkdÞ2 for the wave
number k, where d is the length of the resonator. We called
Cs, Ls, andC, L the effective capacitance and inductance of
the SQUID and of the resonator, respectively. Parameters
used in our simulations assure that δω=ω0 < 10−3.
In the interaction picture, the parametric processes

induced by the SQUID lead to the Hamiltonian

HI
dðtÞ¼ℏcosðϕext=φ0Þ

�X2

l¼1

αlðale−iωltþa†le
iωltÞ2

−ℏ ~αða1e−iω1tþa†1e
iω1tÞða2e−iω2tþa†2e

iω2tÞ
�
; ð3Þ

where φ0 ¼ ℏ=2e is the reduced flux quantum, and the
coefficients αl and ~α are functions of the Josephson energy
(EJ), the junction capacitance (CJ), the cavity parameters
such as capacitance (Cl) and inductance (Ll). If the
parameters αl and ~α are much smaller than cavity frequen-
cies ωl, we can perform the rotating wave approximation
(RWA), and so neglect fast-oscillating terms in Eq. (3). In
this case, if we consider ϕext ¼ ϕ0 þ Δϕ cos ðωdtÞ withΔϕ
a small flux amplitude, then controlling the driving
frequency ωd allows us to selectively activate interaction
terms in the system dynamics. When the cavity is off
resonant and ωd ¼ ω1 þ ω2, the interaction Hamiltonian
reads as Eq. (2). Interactions among different cavity modes,
called mode mixing, are activated under the frequency-
matching condition ωd ¼ ωa − ωb. Cavity and driving
frequencies can be chosen in order to make the relevant
mode interact only with off resonance, overdamped modes.
Circuit design allows each qubit to be resonantly coupled
with a single cavity mode, in which activation of higher
modes due to the DCE mechanism can be neglected.
Our protocol for generating entanglement requires nei-

ther direct [36] nor single cavity-bus mediated [37] qubit-
qubit interaction. Instead, it consists of cooling down the
system to its ground state, turning on the external driving
flux ϕext, and switching it off at time tSO when the maximal
qubit entanglement is reached. The concurrence C is an
entanglement monotone of a given bipartite mixed state
ρ, namely, the minimum average entanglement of an

ensemble of pure states that represents ρ. For an arbitrary
two-qubit state the concurrence reads [38] CðρÞ ¼
max f0; λ1 − λ2 − λ3 − λ4g, where λi are the eigenvalues,
in decreasing order, of the Hermitian matrix R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

~ρ
ffiffiffi
ρ

pp
, with ~ρ ¼ σy ⊗ σyρ

�σy ⊗ σy.
The numerical results are shown in Fig. 3(a). An almost

maximally entangled state (C ¼ 0.97) can be reached
within tSO ≈ 10–500 ns, that is, for a wide range of realistic
system parameters [21]. Such protocol allows generation of
the Bell state jψi ¼ ðjeei þ ijggiÞ= ffiffiffi

2
p

with fidelity
F ¼ jhψ jρjψij ¼ 0.99, with current superconducting cir-
cuits technology. The density matrix of the produced Bell
state is shown in Fig. 3(b). We have also proven that
entanglement generation is robust against small imperfec-
tions due to limited fabrication precision and imperfect
ground-state preparation. Our protocol can be implemented
in an on-chip architecture and it does not require any
external source of squeezed signals [39].
In the framework of superconducting circuits, resonators

can be linked together in unidimensional and bidimen-
sional arrays to build networks of quantum cavities and
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FIG. 3 (color online). (a) Concurrence and mean photon
number as a function of time in units of the cavity frequency
ω1. Here, the chosen parameters are ω1=2π ¼ 4 GHz,
ω2=2π ¼ 5 GHz, the impedance for both cavities is
Z0 ¼ 50 Ω, and the critical current of the SQUID junctions is
IC ¼ 1.1 μA. Such parameters result in a squeezing parameter
α0 ¼ ω1 × 10−3. Each qubit is resonant with its corresponding
cavity and they are coupled with the same interaction strength
g ¼ 0.04ω2. (b) Real and imaginary parts of the density matrix ρ
associated with the two-qubit system.
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superconducting devices. This enables us to envision more
complex configurations which generalize the concept of the
dynamical Casimir effect to the multipartite case. Let us
consider three resonators connected to the ground via a
SQUID, as shown in Fig. 4. Injecting a fast-oscillating
magnetic flux through the SQUID results in varying
boundary conditions, which generate correlated photons
pairs distributed in the three cavity modes. Such a con-
figuration has no direct analogy with optical cavities, as
opposed to the bipartite case. The Hamiltonian that
describes the circuit of Fig. 4 is composed of three
Jaynes-Cummings interactions and three time-dependent
direct couplings between the field quadratures of each
resonator pair

H ¼ ℏ
X3

l¼1

�
ωla

†
lal þ

ωq
l

2
σzl þ glðσþl al þ σ−la

†
lÞ
�

þ ℏ
X

hl;mi
αlmðtÞða†l þ alÞða†m þ amÞ: ð4Þ

If the external flux threading the SQUID is composed of
three signals oscillating at the frequencies ωd

lm ¼ ωl þ ωm,
we can isolate the two-mode squeezing terms as in Eq. (2).
Generating multipartite entanglement is a challenging

task, since it requires multiqubit gates whose operation
fidelity is considerably lower than the single- or two-qubit
gates. Here we show that our protocol allows generation of
genuine multipartite entanglement (GME). With GME, we
refer to quantum correlations which cannot be described
using mixtures of bipartite entangled states alone. The
negativity [40] is an entanglement monotone that estimates
the bipartite entanglement shared between two subsystems

of any possible bipartition; it ranges from zero for separable
to 1=2 for maximally entangled states. It is defined as
N ðρÞ ¼ ∥ρTA∥1 − 1=2, where ∥ρTA∥1 is the trace-norm of
the partial transpose of the bipartite mixed state ρ.
Numerical results on the negativity, shown in Fig. 5(a),
indicate the generation of highly entangled states of three
qubits. Figure 5(b) shows the average photon number in
each cavity. In order to prove that such a state is not
biseparable, we evaluate an entanglement monotone that
detects only multipartite quantum correlations, called
genuine multipartite entanglement (GME) concurrence
CGME. It is obtained after an optimization process over
all decomposable witnesses W ¼ PþQTA , where P
and Q are positive semidefinite [41,42]. Our results,
maxðCGMEÞ ≈ 0.3, confirm the existence of genuine multi-
partite entanglement.
Finally, to identify the entanglement class of three-qubit

states, we make use of the entanglement witness [43]
WGHZ ¼ 3=4I − PGHZ, where PGHZ ¼ jGHZihGHZj.
Negative values for Tr½ρWGHZ� imply that for any decom-
position ρ ¼ P

jpjρj at least one ρj is a GHZ state, and so
ρ belongs to the GHZ class. Local operations do not change
the entanglement class, it means the witness can be
optimized by minimizing Tr½FρF†WGHZ�, where
F ¼ F1 ⊗ F2 ⊗ F3, and Fi are arbitrary single-qubit
SLOCC operations. We obtained WGHZ ¼ −0.06, proving
generation of (mixed) GHZ-like states, which belong to the
most general entanglement class [20].
This scheme can be generalized to study entanglement

generation in one- and two-dimensional cavity arrays in
different geometries. Beyond the proposed model, our
results show that superconducting circuit technology
allows us to exploit the DCE physics as a useful resource
for scalable quantum information protocols, generation of
multipartite entanglement in artificial atoms, and as a
building block for microwave quantum networks.

FIG. 4 (color online). Three coplanar waveguide resonators are
connected to the ground through a SQUID. Each resonator is
coupled with a resonant transmon qubit. This scheme allows
generation of GHZ-like entangled states, through a first-order
process. By using this circuit design as a building block, it is
possible to explore more complex configurations and to build
scalable cavity networks [21].
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FIG. 5 (color online). (a) Negativity of the bipartite system
obtained isolating one qubit from the set of the other two, as a
function of time. Here, we considered resonator frequencies of
ω1=2π ¼ 3.8 GHz, ω2=2π ¼ 5.1 GHz, and ω3=2π ¼ 7.5 GHz.
The SQUID is identical to the bipartite case and we use resonant
qubits. The coupling parameters are homogeneous and their bare
value is given by α0 ¼ 5ω1 × 10−3. (b) Average photon number
in each cavity as a function of time. Because of the symmetric
configuration the photon distribution is the same for the three
cavities.
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