10 research outputs found

    Leveraging Computer Vision for Applications in Biomedicine and Geoscience

    Get PDF
    Skin cancer is one of the most common types of cancer and is usually classified as either non-melanoma and melanoma skin cancer. Melanoma skin cancer accounts for about half of all skin cancer-related deaths. The 5-year survival rate is 99% when the cancer is detected early but drops to 25% once it becomes metastatic. In other words, the key to preventing death is early detection. Foraminifera are microscopic single-celled organisms that exist in marine environments and are classified as living a benthic or planktic lifestyle. In total, roughly 50,000 species are known to have existed, of which about 9,000 are still living today. Foraminifera are important proxies for reconstructing past ocean and climate conditions and as bio-indicators of anthropogenic pollution. Since the 1800s, the identification and counting of foraminifera have been performed manually. The process is resource-intensive. In this dissertation, we leverage recent advances in computer vision, driven by breakthroughs in deep learning methodologies and scale-space theory, to make progress towards both early detection of melanoma skin cancer and automation of the identification and counting of microscopic foraminifera. First, we investigate the use of hyperspectral images in skin cancer detection by performing a critical review of relevant, peer-reviewed research. Second, we present a novel scale-space methodology for detecting changes in hyperspectral images. Third, we develop a deep learning model for classifying microscopic foraminifera. Finally, we present a deep learning model for instance segmentation of microscopic foraminifera. The works presented in this dissertation are valuable contributions in the fields of biomedicine and geoscience, more specifically, towards the challenges of early detection of melanoma skin cancer and automation of the identification, counting, and picking of microscopic foraminifera

    Automatic detection of the mental foramen for estimating mandibular cortical width in dental panoramic radiographs: the seventh survey of the Tromsø Study (Tromsø7) in 2015-2016

    Get PDF
    Objective To apply deep learning to a data set of dental panoramic radiographs to detect the mental foramen for automatic assessment of the mandibular cortical width. Methods Data from the seventh survey of the Tromsø Study (Tromsø7) were used. The data set contained 5197 randomly chosen dental panoramic radiographs. Four pretrained object detectors were tested. We randomly chose 80% of the data for training and 20% for testing. Models were trained using GeForce RTX 2080 Ti with 11 GB GPU memory (NVIDIA Corporation, Santa Clara, CA, USA). Python programming language version 3.7 was used for analysis. Results The EfficientDet-D0 model showed the highest average precision of 0.30. When the threshold to regard a prediction as correct (intersection over union) was set to 0.5, the average precision was 0.79. The RetinaNet model achieved the lowest average precision of 0.23, and the precision was 0.64 when the intersection over union was set to 0.5. The procedure to estimate mandibular cortical width showed acceptable results. Of 100 random images, the algorithm produced an output 93 times, 20 of which were not visually satisfactory. Conclusions EfficientDet-D0 effectively detected the mental foramen. Methods for estimating bone quality are important in radiology and require further development

    Pregnancy-related pelvic girdle pain: an update

    Get PDF
    A large number of scientists from a wide range of medical and surgical disciplines have reported on the existence and characteristics of the clinical syndrome of pelvic girdle pain during or after pregnancy. This syndrome refers to a musculoskeletal type of persistent pain localised at the anterior and/or posterior aspect of the pelvic ring. The pain may radiate across the hip joint and the thigh bones. The symptoms may begin either during the first trimester of pregnancy, at labour or even during the postpartum period. The physiological processes characterising this clinical entity remain obscure. In this review, the definition and epidemiology, as well as a proposed diagnostic algorithm and treatment options, are presented. Ongoing research is desirable to establish clear management strategies that are based on the pathophysiologic mechanisms responsible for the escalation of the syndrome's symptoms to a fraction of the population of pregnant women

    Instance Segmentation of Microscopic Foraminifera

    No full text
    Foraminifera are single-celled marine organisms that construct shells that remain as fossils in the marine sediments. Classifying and counting these fossils are important in paleo-oceanographic and -climatological research. However, the identification and counting process has been performed manually since the 1800s and is laborious and time-consuming. In this work, we present a deep learning-based instance segmentation model for classifying, detecting, and segmenting microscopic foraminifera. Our model is based on the Mask R-CNN architecture, using model weight parameters that have learned on the COCO detection dataset. We use a fine-tuning approach to adapt the parameters on a novel object detection dataset of more than 7000 microscopic foraminifera and sediment grains. The model achieves a (COCO-style) average precision of 0.78 on the classification and detection task, and 0.80 on the segmentation task. When the model is evaluated without challenging sediment grain images, the average precision for both tasks increases to 0.84 and 0.86, respectively. Prediction results are analyzed both quantitatively and qualitatively and discussed. Based on our findings we propose several directions for future work and conclude that our proposed model is an important step towards automating the identification and counting of microscopic foraminifera

    On the improvement and acceleration of eigenvalue decomposition in spectral methods using GPUs

    Get PDF
    The key objectives in this thesis are; the study of GPU-accelerated eigenvalue decomposition in an effort to uncover both benefits and pitfalls, and then to investigate and facilitate a future GPU implementation of the symmetric QR algorithm with permutations. With the current trend of having ever larger datasets both in terms of features and observations, we propose that GPU computation can help ameliorate the temporal penalties incurred by eigendecomposing large matrices. We successfully show the benefits of performing eigendecomposition on GPUs, and also highlight some problems with current GPU implementations. While implementing the QR algorithm on GPU, we discovered that the GPU-based QR decomposition does not explicitly form the orthogonal matrix needed as part of the QR algorithm. Therefore, we propose a novel GPU algorithm for “implicitly” computing the orthogonal matrix Q from the Householder vectors given by the QR decomposition. To illustrate the benefits of our methods, we show that the kernel entropy component analysis algorithm on GPU is two orders of magnitude faster than an equivalent CPU implementation

    Instance Segmentation of Microscopic Foraminifera

    Get PDF
    Foraminifera are single-celled marine organisms that construct shells that remain as fossils in the marine sediments. Classifying and counting these fossils are important in paleo-oceanographic and -climatological research. However, the identification and counting process has been performed manually since the 1800s and is laborious and time-consuming. In this work, we present a deep learning-based instance segmentation model for classifying, detecting, and segmenting microscopic foraminifera. Our model is based on the Mask R-CNN architecture, using model weight parameters that have learned on the COCO detection dataset. We use a fine-tuning approach to adapt the parameters on a novel object detection dataset of more than 7000 microscopic foraminifera and sediment grains. The model achieves a (COCO-style) average precision of 0.78 on the classification and detection task, and 0.80 on the segmentation task. When the model is evaluated without challenging sediment grain images, the average precision for both tasks increases to 0.84 and 0.86, respectively. Prediction results are analyzed both quantitatively and qualitatively and discussed. Based on our findings we propose several directions for future work and conclude that our proposed model is an important step towards automating the identification and counting of microscopic foraminifer

    Recent advances in hyperspectral imaging for melanoma detection

    Get PDF
    Skin cancer is one of the most common types of cancer. Skin cancers are classified as nonmelanoma and melanoma, with the first type being the most frequent and the second type being the most deadly. The key to effective treatment of skin cancer is early detection. With the recent increase of computational power, the number of algorithms to detect and classify skin lesions has increased. The overall verdict on systems based on clinical and dermoscopic images captured with conventional RGB (red, green, and blue) cameras is that they do not outperform dermatologists. Computer‐based systems based on conventional RGB images seem to have reached an upper limit in their performance, while emerging technologies such as hyperspectral and multispectral imaging might possibly improve the results. These types of images can explore spectral regions beyond the human eye capabilities. Feature selection and dimensionality reduction are crucial parts of extracting salient information from this type of data. It is necessary to extend current classification methodologies to use all of the spatiospectral information, and deep learning models should be explored since they are capable of learning robust feature detectors from data. There is a lack of large, high‐quality datasets of hyperspectral skin lesion images, and there is a need for tools that can aid with monitoring the evolution of skin lesions over time. To understand the rich information contained in hyperspectral images, further research using data science and statistical methodologies, such as functional data analysis, scale‐space theory, machine learning, and so on, are essential

    Early detection of change by applying scale-space methodology to hyperspectral images

    No full text
    Abstract Given an object of interest that evolves in time, one often wants to detect possible changes in its properties. The first changes may be small and occur in different scales and it may be crucial to detect them as early as possible. Examples include identification of potentially malignant changes in skin moles or the gradual onset of food quality deterioration. Statistical scale-space methodologies can be very useful in such situations since exploring the measurements in multiple resolutions can help identify even subtle changes. We extend a recently proposed scale-space methodology to a technique that successfully detects such small changes and at the same time keeps false alarms at a very low level. The potential of the novel methodology is first demonstrated with hyperspectral skin mole data artificially distorted to include a very small change. Our real data application considers hyperspectral images used for food quality detection. In these experiments the performance of the proposed method is either superior or on par with a standard approach such as principal component analysis
    corecore