1,076 research outputs found

    Mapping land cover from satellite images: A basic, low cost approach

    Get PDF
    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products

    Dispersion enhancement and damping by buoyancy driven flows in 2D networks of capillaries

    Full text link
    The influence of a small relative density difference on the displacement of two miscible liquids is studied experimentally in transparent 2D networks of micro channels. Both stable displacements in which the denser fluid enters at the bottom of the cell and displaces the lighter one and unstable displacements in which the lighter fluid is injected at the bottom and displaces the denser one are realized. Except at the lowest mean flow velocity U, the average C(x,t)C(x,t) of the relative concentration satisfies a convection-dispersion equation. The dispersion coefficient is studied as function of the relative magnitude of fluid velocity and of the velocity of buoyancy driven fluid motion. A model is suggested and its applicability to previous results obtained in 3D media is discussed

    Prospects for Probing the Spacetime of Sgr A* with Pulsars

    Full text link
    The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of the supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 micro-second precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below ~0.3 yr is there the possibility of having negligible external perturbations. For such orbits we expect a ~10^-3 test of the frame dragging and a ~10^-2 test of the no-hair theorem within 5 years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R0. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R0.Comment: 12 pages, 10 Figures, accepted for publication in Ap

    A non trivial extension of the two-dimensional Ising model: the d-dimensional "molecular" model

    Full text link
    A recently proposed molecular model is discussed as a non-trivial extension of the Ising model. For d=2 the two models are shown to be equivalent, while for d>2 the molecular model describes a peculiar second order transition from an isotropic high temperature phase to a low-dimensional anisotropic low temperature state. The general mean field analysis is compared with the results achieved by a variational Migdal-Kadanoff real space renormalization group method and by standard Monte Carlo sampling for d=3. By finite size scaling the critical exponent has been found to be 0.44\pm 0.02 thus establishing that the molecular model does not belong to the universality class of the Ising model for d>2.Comment: 25 pages, 5 figure

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (≲\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (≳\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    The Integrated S-BPM Process Model

    Get PDF

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur

    Two approaches to testing general relativity in the strong-field regime

    Full text link
    Observations of compact objects in the electromagnetic spectrum and the detection of gravitational waves from them can lead to quantitative tests of the theory of general relativity in the strong-field regime following two very different approaches. In the first approach, the general relativistic field equations are modified at a fundamental level and the magnitudes of the potential deviations are constrained by comparison with observations. In the second approach, the exterior spacetimes of compact objects are parametrized in a phenomenological way, the various parameters are measured observationally, and the results are finally compared against the general relativistic predictions. In this article, I discuss the current status of both approaches, focusing on the lessons learned from a large number of recent investigations.Comment: To appear in the proceedings of the conference New Developments in Gravit

    Strong Gravitational Lensing of Quasi-Kerr Compact Object with Arbitrary Quadrupole Moments

    Full text link
    We study the strong gravitational lensing on the equatorial plane of a quasi-Kerr compact object with arbitrary quadrupole moments which can be used to model the super-massive central object of the galaxy. We find that, when the quadrupolar correction parameter ξ\xi takes the positive (negative) value, the photon-sphere radius rpsr_{ps}, the minimum impact parameter upsu_{ps}, the coefficient bˉ\bar{b}, the relative magnitudes rmr_m and the angular position of the relativistic images θ∞\theta_{\infty} are larger (smaller) than the results obtained in the Kerr black hole, but the coefficient aˉ\bar{a}, the deflection angle α(θ)\alpha(\theta) and the angular separation ss are smaller (larger) than that in the Kerr black hole. These features may offer a way to probe special properties for some rotating compact objects by the astronomical instruments in the future.Comment: 17 pages, 4 figures. Accepted for publication in JHE

    RNA polymerase II stalling promotes nucleosome occlusion and pTEFb recruitment to drive immortalization by Epstein-Barr virus

    Get PDF
    Epstein-Barr virus (EBV) immortalizes resting B-cells and is a key etiologic agent in the development of numerous cancers. The essential EBV-encoded protein EBNA 2 activates the viral C promoter (Cp) producing a message of ~120 kb that is differentially spliced to encode all EBNAs required for immortalization. We have previously shown that EBNA 2-activated transcription is dependent on the activity of the RNA polymerase II (pol II) C-terminal domain (CTD) kinase pTEFb (CDK9/cyclin T1). We now demonstrate that Cp, in contrast to two shorter EBNA 2-activated viral genes (LMP 1 and 2A), displays high levels of promoter-proximally stalled pol II despite being constitutively active. Consistent with pol II stalling, we detect considerable pausing complex (NELF/DSIF) association with Cp. Significantly, we observe substantial Cp-specific pTEFb recruitment that stimulates high-level pol II CTD serine 2 phosphorylation at distal regions (up to +75 kb), promoting elongation. We reveal that Cp-specific pol II accumulation is directed by DNA sequences unfavourable for nucleosome assembly that increase TBP access and pol II recruitment. Stalled pol II then maintains Cp nucleosome depletion. Our data indicate that pTEFb is recruited to Cp by the bromodomain protein Brd4, with polymerase stalling facilitating stable association of pTEFb. The Brd4 inhibitor JQ1 and the pTEFb inhibitors DRB and Flavopiridol significantly reduce Cp, but not LMP1 transcript production indicating that Brd4 and pTEFb are required for Cp transcription. Taken together our data indicate that pol II stalling at Cp promotes transcription of essential immortalizing genes during EBV infection by (i) preventing promoter-proximal nucleosome assembly and ii) necessitating the recruitment of pTEFb thereby maintaining serine 2 CTD phosphorylation at distal regions
    • …
    corecore