1,133 research outputs found

    A non trivial extension of the two-dimensional Ising model: the d-dimensional "molecular" model

    Full text link
    A recently proposed molecular model is discussed as a non-trivial extension of the Ising model. For d=2 the two models are shown to be equivalent, while for d>2 the molecular model describes a peculiar second order transition from an isotropic high temperature phase to a low-dimensional anisotropic low temperature state. The general mean field analysis is compared with the results achieved by a variational Migdal-Kadanoff real space renormalization group method and by standard Monte Carlo sampling for d=3. By finite size scaling the critical exponent has been found to be 0.44\pm 0.02 thus establishing that the molecular model does not belong to the universality class of the Ising model for d>2.Comment: 25 pages, 5 figure

    Dispersion enhancement and damping by buoyancy driven flows in 2D networks of capillaries

    Full text link
    The influence of a small relative density difference on the displacement of two miscible liquids is studied experimentally in transparent 2D networks of micro channels. Both stable displacements in which the denser fluid enters at the bottom of the cell and displaces the lighter one and unstable displacements in which the lighter fluid is injected at the bottom and displaces the denser one are realized. Except at the lowest mean flow velocity U, the average C(x,t)C(x,t) of the relative concentration satisfies a convection-dispersion equation. The dispersion coefficient is studied as function of the relative magnitude of fluid velocity and of the velocity of buoyancy driven fluid motion. A model is suggested and its applicability to previous results obtained in 3D media is discussed

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur

    Strong Gravitational Lensing of Quasi-Kerr Compact Object with Arbitrary Quadrupole Moments

    Full text link
    We study the strong gravitational lensing on the equatorial plane of a quasi-Kerr compact object with arbitrary quadrupole moments which can be used to model the super-massive central object of the galaxy. We find that, when the quadrupolar correction parameter Ο\xi takes the positive (negative) value, the photon-sphere radius rpsr_{ps}, the minimum impact parameter upsu_{ps}, the coefficient bˉ\bar{b}, the relative magnitudes rmr_m and the angular position of the relativistic images ξ∞\theta_{\infty} are larger (smaller) than the results obtained in the Kerr black hole, but the coefficient aˉ\bar{a}, the deflection angle α(Ξ)\alpha(\theta) and the angular separation ss are smaller (larger) than that in the Kerr black hole. These features may offer a way to probe special properties for some rotating compact objects by the astronomical instruments in the future.Comment: 17 pages, 4 figures. Accepted for publication in JHE

    Advances in surface EMG signal simulation with analytical and numerical descriptions of the volume conductor

    Get PDF
    Surface electromyographic (EMG) signal modeling is important for signal interpretation, testing of processing algorithms, detection system design, and didactic purposes. Various surface EMG signal models have been proposed in the literature. In this study we focus on 1) the proposal of a method for modeling surface EMG signals by either analytical or numerical descriptions of the volume conductor for space-invariant systems, and 2) the development of advanced models of the volume conductor by numerical approaches, accurately describing not only the volume conductor geometry, as mainly done in the past, but also the conductivity tensor of the muscle tissue. For volume conductors that are space-invariant in the direction of source propagation, the surface potentials generated by any source can be computed by one-dimensional convolutions, once the volume conductor transfer function is derived (analytically or numerically). Conversely, more complex volume conductors require a complete numerical approach. In a numerical approach, the conductivity tensor of the muscle tissue should be matched with the fiber orientation. In some cases (e.g., multi-pinnate muscles) accurate description of the conductivity tensor may be very complex. A method for relating the conductivity tensor of the muscle tissue, to be used in a numerical approach, to the curve describing the muscle fibers is presented and applied to representatively investigate a bi-pinnate muscle with rectilinear and curvilinear fibers. The study thus propose an approach for surface EMG signal simulation in space invariant systems as well as new models of the volume conductor using numerical methods

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (â‰Č\lesssim 4 ÎŒ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (≳\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    VectorDisk: a microfluidic platform integrating diagnostic markers for evidence-based mosquito control

    Get PDF
    Effective mosquito monitoring relies on the accurate identification and characterization of the target population. Since this process requires specialist knowledge and equipment that is not widely available, automated field-deployable systems are highly desirable. We present a centrifugal microfluidic cartridge, the VectorDisk, which integrates TaqMan PCR assays in two feasibility studies, aiming to assess multiplexing capability, specificity, and reproducibility in detecting disk-integrated vector-related assays. In the first study, pools of 10 mosquitoes were used as samples. We tested 18 disks with 27 DNA and RNA assays each, using a combination of multiple microfluidic chambers and detection wavelengths (geometric and color multiplexing) to identify mosquito and malaria parasite species as well as insecticide resistance mechanisms. In the second study, purified nucleic acids served as samples to test arboviral and malaria infective mosquito assays. Nine disks were tested with 14 assays each. No false positive results were detected on any of the disks. The coe cient of variation in reproducibility tests was <10%. The modular nature of the platform, the easy adaptation of the primer/probe panels, the cold chain independence, the rapid (2-3 h) analysis, and the assay multiplexing capacity are key features, rendering the VectorDisk a potential candidate for automated vector analysis

    Correlations in a Many-Body Calculation of 11^{\bf 11}Li

    Full text link
    A many-body calculation of 11^{11}Li is presented where the only input is the well-tested, finite-range {\it D1S} effective interaction of {\it Gogny}. Pairing correlations are included in a constrained Hartree-Fock-Bogolyubov calculation, while long-range collective correlations are introduced using a GCM derived calculation. Correlations are found to play an important role in describing 11^{11}Li. A substantive underlying 9^9Li core of 11^{11}Li is found, which has a different density profile than a free 9^9Li nucleus. This may have significant implications in the use of a three-body framework in studies of 11^{11}Li.Comment: 23 pages typeset in revtex 2.0 with 8 postscript figures in accompanying uuencoded fil

    Binary black hole shadows, chaotic scattering and the Cantor set

    Get PDF
    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar–Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist around two black holes of equal mass M separated by a1 < a < √ 2a1, where a1 = 4M/√ 27. To show how this possibility arises, we define a certain potential function and classify its stationary points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property. Finally, we consider the possibility of following null geodesics through event horizons, and chaos in the maximally extended spacetime
    • 

    corecore