96 research outputs found

    Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits

    Get PDF
    Recent proposals to compensate developing countries for reducing emissions from deforestation (RED) under forthcoming climate change mitigation regimes are receiving increasing attention. Here we demonstrate that if RED credits were traded on international carbon markets, even moderate decreases in deforestation rates could generate billions of Euros annually for tropical forest conservation. We also discuss the main challenges for a RED mechanism that delivers real climatic benefits. These include providing sufficient incentives while only rewarding deforestation reductions beyond business-as-usual scenarios, addressing risks arising from forest degradation and international leakage, and ensuring permanence of emission reductions. Governance may become a formidable challenge for RED because some countries with the highest RED potentials score poorly on governance indices. In addition to climate mitigation, RED funds could help achieve substantial co-benefits for biodiversity conservation and human development. However, this will probably require targeted additional support because the highest biodiversity threats and human development needs may exist in countries that have limited income potentials from RED. In conclusion, how successfully a market-based RED mechanism can contribute to climate change mitigation, conservation and development will strongly depend on accompanying measures and carefully designed incentive structures involving governments, business, as well as the conservation and development communities

    An exquisitely deep view of quenching galaxies through the gravitational lens: Stellar population, morphology, and ionized gas

    Get PDF
    This work presents an in-depth analysis of four gravitationally lensed red galaxies at z = 1.6-3.2. The sources are magnified by factors of 2.7-30 by foreground clusters, enabling spectral and morphological measurements that are otherwise challenging. Our sample extends below the characteristic mass of the stellar mass function and is thus more representative of the quiescent galaxy population at z > 1 than previous spectroscopic studies. We analyze deep VLT/X-SHOOTER spectra and multi-band Hubble Space Telescope photometry that cover the rest-frame UV-to-optical regime. The entire sample resembles stellar disks as inferred from lensing-reconstructed images. Through stellar population synthesis analysis we infer that the targets are young (median age = 0.1-1.2 Gyr) and formed 80% of their stellar masses within 0.07-0.47 Gyr. Mg II λλ2796,2803\lambda\lambda 2796,2803 absorption is detected across the sample. Blue-shifted absorption and/or redshifted emission of Mg II is found in the two youngest sources, indicative of a galactic-scale outflow of warm (T104T\sim10^{4} K) gas. The [O III] λ5007\lambda5007 luminosity is higher for the two young sources (median age less than 0.4 Gyr) than the two older ones, perhaps suggesting a decline in nuclear activity as quenching proceeds. Despite high-velocity (v1500v\approx1500 km s1^{-1}) galactic-scale outflows seen in the most recently quenched galaxies, warm gas is still present to some extent long after quenching. Altogether our results indicate that star formation quenching at high redshift must have been a rapid process (< 1 Gyr) that does not synchronize with bulge formation or complete gas removal. Substantial bulge growth is required if they are to evolve into the metal-rich cores of present-day slow-rotators.Comment: Accepted for publication in the Astrophysical Journal. 37 pages, 20 figures, 10 table

    SYSTOMONAS — an integrated database for systems biology analysis of Pseudomonas

    Get PDF
    To provide an integrated bioinformatics platform for a systems biology approach to the biology of pseudomonads in infection and biotechnology the database SYSTOMONAS (SYSTems biology of pseudOMONAS) was established. Besides our own experimental metabolome, proteome and transcriptome data, various additional predictions of cellular processes, such as gene-regulatory networks were stored. Reconstruction of metabolic networks in SYSTOMONAS was achieved via comparative genomics. Broad data integration is realized using SOAP interfaces for the well established databases BRENDA, KEGG and PRODORIC. Several tools for the analysis of stored data and for the visualization of the corresponding results are provided, enabling a quick understanding of metabolic pathways, genomic arrangements or promoter structures of interest. The focus of SYSTOMONAS is on pseudomonads and in particular Pseudomonas aeruginosa, an opportunistic human pathogen. With this database we would like to encourage the Pseudomonas community to elucidate cellular processes of interest using an integrated systems biology strategy. The database is accessible at

    A comparison of baseline methodologies for 'Reducing Emissions from Deforestation and Degradation'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A mechanism for emission reductions from deforestation and degradation (REDD) is very likely to be included in a future climate agreement. The choice of REDD baseline methodologies will crucially influence the environmental and economic effectiveness of the climate regime. We compare three different historical baseline methods and one innovative dynamic model baseline approach to appraise their applicability under a future REDD policy framework using a weighted multi-criteria analysis.</p> <p>Results</p> <p>The results show that each baseline method has its specific strengths and weaknesses. Although the dynamic model allows for the best environmental and for comparatively good economic performance, its high demand for data and technical capacity limit the current applicability in many developing countries.</p> <p>Conclusion</p> <p>The adoption of a multi-tier approach will allow countries to select the baseline method best suiting their specific capabilities and data availability while simultaneously ensuring scientific transparency, environmental effectiveness and broad political support.</p

    Multidimensional responses of grassland stability to eutrophication

    Get PDF
    Eutrophication usually impacts grassland biodiversity, community composition, and biomass production, but its impact on the stability of these community aspects is unclear. One challenge is that stability has many facets that can be tightly correlated (low dimensionality) or highly disparate (high dimensionality). Using standardized experiments in 55 grassland sites from a globally distributed experiment (NutNet), we quantify the effects of nutrient addition on five facets of stability (temporal invariability, resistance during dry and wet growing seasons, recovery after dry and wet growing seasons), measured on three community aspects (aboveground biomass, community composition, and species richness). Nutrient addition reduces the temporal invariability and resistance of species richness and community composition during dry and wet growing seasons, but does not affect those of biomass. Different stability measures are largely uncorrelated under both ambient and eutrophic conditions, indicating consistently high dimensionality. Harnessing the dimensionality of ecological stability provides insights for predicting grassland responses to global environmental change

    Conceptual Frameworks and Methods for Advancing Invasion Ecology

    Get PDF
    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology
    corecore