26 research outputs found
Recommended from our members
Studies in Framework Science Metal-organic Framework Composites BET Theory and Adsorption Reticular Chemistry and DNA Frameworks
Abstract
Surfaces and self-assembly, two quintessential parts of modern nanotechnology, meet in the porous framework, a material formed by self-assembly and consisting only of surfaces, no
bulk. This dissertation outlines the triangular relationship between frameworks, surfaces, and self-assembly. As such, it is organised in three distinct projects each corresponding to one of the three poles of this triangle.
Frameworks | In this project, the chemistry of metal-organic framework (MOF) composites is explored. MOFs are porous coordination crystals made from the assembly of metal nodes and organic linkers. The Zr-MOF NU-901, which is known for its high thermal and chemical stability, is grown around plasmonic gold nanorods (AuNRs) in a core-shell bottlearound-
ship encapsulation, and the synthesis is optimised to various morphology parameters. The resulting AuNR@NU-901 composites have multiple plasmonic applications. First, their use as drug delivery vehicles is explored: in this project, the photothermal energy conversion of AuNRs is used to trigger drug release from a MOF’s porosity under near-infrared light
activation. In the second application, the composites were used as size-selective Raman sensors. Here, the MOFs porosity was used as a size-exclusion filter to gate the access of molecules to the plasmonic core where their characteristic Raman signal was amplified.
In this proof-of-principle study, size-selective sensing from a mixed analyte solution was demonstrated, making AuNR@NU-901 a viable candidate for potential pollutant or pesticide sensing.
Surfaces | The Brunauer-Emmett-Teller (BET) theory is one of the most widely used equations in physical chemistry. Developed in the 1930s, to this day it remains the most important figure of merit in porosimetry with far-reaching industrial and academic influences. Despite its widespread use, there remain significant issues with the manual calculation of
BET surface areas. To probe this, 115 international collaborators with a strong track record in the study of nanoporous materials were brought together in a round-robin experiment: they were sent 18 anonymised isotherms and were asked to calculate their BET areas in the
way they most saw fit. The results from this study show that reproducibility of BET area determination from identical isotherms is a largely ignored issue, raising critical concerns over the reliability of reported BET areas in the literature. To solve this major issue, a new algorithmic approach was developed to accurately and systematically determine the BET area of nanoporous materials.
Self-assembly | Metal-organic frameworks and periodic DNA nanostructures are both assembled from constituent nodes and linkers. The similarities between these assemblies are herein described, and a common language for MOF chemistry and DNA crystals is developed: reticular colouring design (RCD). RCD not only represents a novel lens through which existing DNA crystals can be viewed, it can also lead to new and innovative designs
by exploiting graph theoretical concepts of network topology that were developed for MOFs and related frameworks. As such, this project connects the dots and introduces two fields to one another that have traditionally little association.
The triangular relationship frameworks – surfaces – self-assembly has appeared throughout this dissertation and my academic career at Cambridge. It has blessed me with an unconventionally multipolar PhD with interdisciplinary research and outside-the-box inspirations
at the forefront. I hope that the dissertation standing at the end of this incredible journey will be of interest to the reader and contribute to some small extent to academic research and society.Engineering and Physical Sciences Research Council (EPSRC
How Reproducible are Surface Areas Calculated from the BET Equation?
This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, Innovate UK (104384) and EPSRC IAA (IAA/RG85685). N.R. acknowledges the support of the Cambridge International Scholarship and the TrinityHenry Barlow Scholarship (Honorary). O.K.F. and R.Q.S. acknowledge funding from the U.S. Department of Energy (DE-FG02-08ER15967). R.S.F. and D.B. acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (SCoTMOF), ERC-2015-StG 677289. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The authors gratefully acknowledge funding from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office, through the Hydrogen Storage Materials Advanced Research Consortium (HyMARC). This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. J.D.E. acknowledges the support of the Alexander von Humboldt Foundation and the Center for Information Services and High Performance Computing (ZIH) at TU Dresden. S.K.G. and S.M. acknowledge SERB (Project No. CRG/2019/000906), India for financial support. K.K. and R.K. acknowledge Active Co. Research Grant for funding. S.K. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (COSMOS), ERC-2017-StG 756489. N.L. and J.G.M acknowledge funding from the European Commission through the H2020-MSCA-RISE-2019 program (ZEOBIOCHEM -872102) and the Spanish MICINN and AEI/FEDER (RTI2018-099504-B-C21). N.L. thanks the University of Alicante for funding (UATALENTO17-05). ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706) S.M.J.R. and A.L. wish to thank the Fund for Scientific Research Flanders (FWO), under grant nos. 12T3519N and 11D2220N. L.S. was supported by the EPSRC Cambridge NanoDTC EP/L015978/1. C.T.Y. and T.S.N. acknowledges funds from the National Research Foundation of Korea, NRF-2017M3A7B4042140 and NRF-2017M3A7B4042235. P.F. and H. Y. acknowledge US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Award No. DE-SC0010596 (P.F.). R.O. would like to acknowledge funding support during his Ph.D. study from Indonesian Endowment Fund for Education-LPDP with the contract No. 202002220216006. Daniel Siderius: Official contribution of the National Institute of Standards and Technology (NIST), not subject to copyright in the United States of America. Daniel Siderius: Certain commercially available items may be identified in this paper. This identification does not imply recommendation by NIST, nor does it imply that it is the best available for the purposes described. B.V.L, S.T.E and A.M.P acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (Grant agreement no. 639233, COFLeaf).Porosity and surface area analysis play a prominent role in modern materials
science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory,
which has been a remarkably successful contribution to the field of materials
science. The BET method was developed in the 1930s for open surfaces but is
now the most widely used metric for the estimation of surface areas of microand
mesoporous materials. Despite its widespread use, the calculation of
BET surface areas causes a spread in reported areas, resulting in reproducibility
problems in both academia and industry. To prove this, for this analysis,
18 already-measured raw adsorption isotherms were provided to sixty-one
labs, who were asked to calculate the corresponding BET areas. This roundrobin
exercise resulted in a wide range of values. Here, the reproducibility
of BET area determination from identical isotherms is demonstrated to be a
largely ignored issue, raising critical concerns over the reliability of reported
BET areas. To solve this major issue, a new computational approach to accurately
and systematically determine the BET area of nanoporous materials is
developed. The software, called “BET surface identification” (BETSI), expands
on the well-known Rouquerol criteria and makes an unambiguous BET area
assignment possible.European Research Council (ERC) ERC-2016-COG 726380
ERC-2015-StG 677289
ERC-2017-StG 756489
639233UK Research & Innovation (UKRI)
Innovate UK 104384
UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) IAA/RG85685Cambridge International Scholarship
TrinityHenry Barlow ScholarshipUnited States Department of Energy (DOE) DE-FG02-08ER15967National Nuclear Security Administration DE-NA-0003525United States Department of Energy (DOE)Alexander von Humboldt FoundationCenter for Information Services and High Performance Computing (ZIH) at TU DresdenDepartment of Science & Technology (India)Science Engineering Research Board (SERB), India CRG/2019/000906Active Co. Research GrantEuropean Commission through the H2020-MSCA-RISE-2019 program ZEOBIOCHEM -872102Spanish MICINN and AEI/FEDER RTI2018-099504-B-C21University of Alicante UATALENTO17-05Spanish Government SEV-2017-0706
FWO 12T3519N
11D2220NUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) EP/L015978/1National Research Foundation of Korea NRF-2017M3A7B4042140
NRF-2017M3A7B4042235United States Department of Energy (DOE) DE-SC0010596Indonesian Endowment Fund for Education-LPDP 20200222021600
How reproducible are surface areas calculated from the BET equation?
ArtĂculo escrito por un elevado nĂşmero de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboraciĂłn, si le hubiere, y los autores pertenecientes a la UAMPorosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer–Emmett–Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials. Despite its widespread use, the calculation of BET surface areas causes a spread in reported areas, resulting in reproducibility problems in both academia and industry. To prove this, for this analysis, 18 already-measured raw adsorption isotherms were provided to sixty-one labs, who were asked to calculate the corresponding BET areas. This round-robin exercise resulted in a wide range of values. Here, the reproducibility of BET area determination from identical isotherms is demonstrated to be a largely ignored issue, raising critical concerns over the reliability of reported BET areas. To solve this major issue, a new computational approach to accurately and systematically determine the BET area of nanoporous materials is developed. The software, called “BET surface identification” (BETSI), expands on the well-known Rouquerol criteria and makes an unambiguous BET area assignment possibl
Recommended from our members
Super-condenser enables labelfree nanoscopy.
Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines Fourier ptychography with waveguide microscopy to realize a 'super-condenser' featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed SiN waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 m in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval
algorithm two-fold: firstly, the directionality of the illumination wave vector
is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We validate the method via in silico and in vitro experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm
Super-condenser enables labelfree nanoscopy.
Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines coherent imaging techniques with waveguide microscopy to realize a super-condenser featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed Si3N4 waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 ÎĽm2 in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval algorithm two-fold: firstly, the directionality of the illumination wave vector is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We test the method in simulations and in experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm. While the generated Fourier ptychography reconstructions are found to be prone to image artefacts, an alternative coherent imaging method, rotating coherent scattering microscopy (ROCS), is found to be more robust against artefacts but with less achievable resolution
Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications.
Three-dimensional magnetic nanostructures hold great potential to revolutionize information technologies and to enable the study of novel physical phenomena. In this work, we describe a hybrid nanofabrication process combining bottom-up 3D nano-printing and top-down thin film deposition, which leads to the fabrication of complex magnetic nanostructures suitable for the study of new 3D magnetic effects. First, a non-magnetic 3D scaffold is nano-printed using Focused Electron Beam Induced Deposition; then a thin film magnetic material is thermally evaporated onto the scaffold, leading to a functional 3D magnetic nanostructure. Scaffold geometries are extended beyond recently developed single-segment geometries by introducing a dual-pitch patterning strategy. Additionally, by tilting the substrate during growth, low-angle segments can be patterned, circumventing a major limitation of this nano-printing process; this is demonstrated by the fabrication of ‘staircase’ nanostructures with segments parallel to the substrate. The suitability of nano-printed scaffolds to support thermally evaporated thin films is discussed, outlining the importance of including supporting pillars to prevent deformation during the evaporation process. Employing this set of methods, a set of nanostructures tailored to precisely match a dark-field magneto-optical magnetometer have been fabricated and characterized. This work demonstrates the versatility of this hybrid technique and the interesting magnetic properties of the nanostructures produced, opening a promising route for the development of new 3D devices for applications and fundamental studies
Design of a Functionalized Metal-Organic Framework System for Enhanced Targeted Delivery to Mitochondria.
Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the in vivo delivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal-organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca. 10% compared to the nontargeted MOF. The performance of the system is evaluated using a holistic approach ranging from microscopy to transcriptomics. Super-resolution microscopy of MCF-7 cells treated with the targeted MOF system reveals important mitochondrial morphology changes that are clearly associated with cell death as soon as 30 min after incubation. Whole transcriptome analysis of cells indicates widespread changes in gene expression when treated with the MOF system, specifically in biological processes that have a profound effect on cell physiology and that are related to cell death. We show how targeting MOFs toward mitochondria represents a valuable strategy for the development of new drug delivery systems
Recommended from our members
Core-Shell Gold Nanorod@Zirconium-Based Metal-Organic Framework Composites as in Situ Size-Selective Raman Probes.
Nanoparticle encapsulation inside zirconium-based metal-organic frameworks (NP@MOF) is hard to control, and the resulting materials often have nonuniform morphologies with NPs on the external surface of MOFs and NP aggregates inside the MOFs. In this work, we report the controlled encapsulation of gold nanorods (AuNRs) by a scu-topology Zr-MOF, via a room-temperature MOF assembly. This is achieved by functionalizing the AuNRs with poly(ethylene glycol) surface ligands, allowing them to retain colloidal stability in the precursor solution and to seed the MOF growth. Using this approach, we achieve core-shell yields exceeding 99%, tuning the MOF particle size via the solution concentration of AuNRs. The functionality of AuNR@MOFs is demonstrated by using the AuNRs as embedded probes for selective surface-enhanced Raman spectroscopy (SERS). The AuNR@MOFs are able to both take-up or block molecules from the pores, thereby facilitating highly selective sensing at the AuNR ends. This proof-of-principle study serves to present both the outstanding level of control in the synthesis and the high potential for AuNR@Zr-MOF composites for SERS
Design of a functionalized metal-organic framework system for enhanced targeted delivery to mitochondria
Mitochondria play a key role in oncogenesis and constitute one of the most important targets for cancer treatments. Although the most effective way to deliver drugs to mitochondria is by covalently linking them to a lipophilic cation, the in vivo delivery of free drugs still constitutes a critical bottleneck. Herein, we report the design of a mitochondria-targeted metal-organic framework (MOF) that greatly increases the efficacy of a model cancer drug, reducing the required dose to less than 1% compared to the free drug and ca. 10% compared to the non-targeted MOF. The performance of the system is evaluated using a holistic approach ranging from microscopy to transcriptomics. Super-resolution microscopy of MCF-7 cells treated with the targeted MOF system reveals important mitochondrial morphology changes that are clearly associated with cell death as soon as 30 minutes after incubation. Whole transcriptome analysis of cells indicated widespread changes in gene expression when treated with the MOF system, specifically in biological processes that have a profound effect on cell physiology and that are related to cell death. We show how targeting MOFs towards mitochondria represents a valuable strategy for the development of new drug delivery systems