82 research outputs found

    Testing of alignment parameters for ancient samples: evaluating and optimizing mapping parameters for ancient samples using the TAPAS tool

    Get PDF
    High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present ‘TAPAS’, (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material

    Mitogenome Phylogeny Including Data from Additional Subspecies Provides New Insights into the Historical Biogeography of the Eurasian lynx Lynx lynx.

    Get PDF
    Previous molecular studies of the wide-ranging Eurasian lynx Lynx lynx focused mainly on its northern Palearctic populations, with the consequence that the reconstruction of this species' evolutionary history did not include genetic variation present in its southern Palearctic distribution. We sampled a previously not considered Asian subspecies (L. l. dinniki), added published data from another Asian subspecies (L. l. isabellinus), and reassessed the Eurasian lynx mtDNA phylogeny along with previously published data from northern Palearctic populations. Our mitogenome-based analyses revealed the existence of three major clades (A: Central Asia, B: SE Europe/SW Asia, C: Europe and Northern Asia) and at least five lineages, with diversification in Lynx lynx commencing at least 28kyr earlier than hitherto estimated. The subspecies L. l. isabellinus harbors the most basal matriline, consistent with the origin of Lynx lynx in this subspecies' current range. L. l. dinniki harbors the second most basal matriline, which is related to, and may be the source of, the mtDNA diversity of the critically endangered Balkan lynx L. l. balcanicus. Our results suggest that the Anatolian peninsula was a glacial refugium for Eurasian lynx, with previously unconsidered implications for the colonization of Europe by this species

    Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens

    Get PDF
    Millions of scientific specimens are housed in museum collections, a large part of which are fluid preserved. The use of formaldehyde as fixative and subsequent storage in ethanol is especially common in ichthyology and herpetology. This type of preservation damages DNA and reduces the chance of successful retrieval of genetic data. We applied ancient DNA extraction and single stranded library construction protocols to a variety of vertebrate samples obtained from wet collections and of different ages. Our results show that almost all samples tested yielded endogenous DNA. Archival DNA extraction was successful across different tissue types as well as using small amounts of tissue. Conversion of archival DNA fragments into single-stranded libraries resulted in usable data even for samples with initially undetectable DNA amounts. Subsequent target capture approaches for mitochondrial DNA using homemade baits on a subset of 30 samples resulted in almost complete mitochondrial genome sequences in several instances. Thus, application of ancient DNA methodology makes wet collection specimens, including type material as well as rare, old or extinct species, accessible for genetic and genomic analyses. Our results, accompanied by detailed step-by-step protocols, are a large step forward to open the DNA archive of museum wet collections for scientific studies.publishedVersio

    Diversity and Paleodemography of the Addax (<i>Addax nasomaculatus</i>), a Saharan Antelope on the Verge of Extinction.

    Get PDF
    Since the 19th century, the addax (Addax nasomaculatus) has lost approximately 99% of its former range. Along with its close relatives, the blue antelope (Hippotragus leucophaeus) and the scimitar-horned oryx (Oryx dammah), the addax may be the third large African mammal species to go extinct in the wild in recent times. Despite this, the evolutionary history of this critically endangered species remains virtually unknown. To gain insight into the population history of the addax, we used hybridization capture to generate ten complete mitochondrial genomes from historical samples and assembled a nuclear genome. We found that both mitochondrial and nuclear diversity are low compared to other African bovids. Analysis of mitochondrial genomes revealed a most recent common ancestor ~32 kya (95% CI 11-58 kya) and weak phylogeographic structure, indicating that the addax likely existed as a highly mobile, panmictic population across its Sahelo-Saharan range in the past. PSMC analysis revealed a continuous decline in effective population size since ~2 Ma, with short intermediate increases at ~500 and ~44 kya. Our results suggest that the addax went through a major bottleneck in the Late Pleistocene, remaining at low population size prior to the human disturbances of the last few centuries

    Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics

    Get PDF
    Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1–3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (∼18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Paijmans et al. present ancient DNA from some of the most recognized extinct Pleistocene megafauna: the saber-toothed cats. The results elucidate the evolutionary history of these iconic carnivores and provide genetic evidence that saber-toothed cats existed in Europe over 200,000 years later than previously believed.This project received funding from the European Research Council (consolidator grant GeneFlow no. 310763 to M.H.), European Union’s Seventh Framework Programme for research, technological development, and demonstration (grant no. FP7-PEOPLE-2011-IEF-298820 to R.B.), and Lundbeck Foundation (grant no. R52-A5062 to M.L.Z.-M.)

    A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica

    Get PDF
    The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64–77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.Facultad de Ciencias Naturales y Muse
    corecore