34 research outputs found

    Reprocessing polyurethane foam using dynamic covalent chemistry in extrusion

    Get PDF
    Thermoset polyurethanes (PUs) pose recycling challenges due to their crosslinked structure. This study investigates the possibility to directly reprocess PU foams through (dynamic) carbamate exchange using reactive extrusion. By varying compounding temperature and catalyst (dibutyltin dilaurate, DBTDL) concentration, the extrusion process is examined using torque measurements. We clearly show that it is possible to reprocess the PU foam at temperatures well below 200°C and that DBTDL catalyst greatly enhances bond exchange rates during compounding. Reproducible extrusions at 160°C with 0.3 wt% DBTDL result in a material with a gel fraction of 0.90 displaying typical dynamic covalent network behavior, as confirmed by stress relaxation measurements. The measured characteristic relaxation times display an Arrhenius-type temperature dependence with an activation energy of 41 kJ/mol. Successful extrusion of fully crosslinked PU foam at milder temperatures with DBTDL catalyst demonstrates potential for PU foam recycling using reactive extrusion, and generally highlights the feasibility of dynamic crosslink reconfiguration for waste reduction and improved sustainability

    Reprocessing polyurethane foam using dynamic covalent chemistry in extrusion

    Get PDF
    Thermoset polyurethanes (PUs) pose recycling challenges due to their crosslinked structure. This study investigates the possibility to directly reprocess PU foams through (dynamic) carbamate exchange using reactive extrusion. By varying compounding temperature and catalyst (dibutyltin dilaurate, DBTDL) concentration, the extrusion process is examined using torque measurements. We clearly show that it is possible to reprocess the PU foam at temperatures well below 200°C and that DBTDL catalyst greatly enhances bond exchange rates during compounding. Reproducible extrusions at 160°C with 0.3 wt% DBTDL result in a material with a gel fraction of 0.90 displaying typical dynamic covalent network behavior, as confirmed by stress relaxation measurements. The measured characteristic relaxation times display an Arrhenius-type temperature dependence with an activation energy of 41 kJ/mol. Successful extrusion of fully crosslinked PU foam at milder temperatures with DBTDL catalyst demonstrates potential for PU foam recycling using reactive extrusion, and generally highlights the feasibility of dynamic crosslink reconfiguration for waste reduction and improved sustainability

    Intramolecularly catalyzed dynamic polyester networks using neighboring carboxylic and sulfonic acid groups

    Get PDF
    Dynamic covalent bonds in a polymer network lead to plasticity, reshapability, and potential recyclability at elevated temperatures in combination with solvent-resistance and better dimensional stability at lower temperatures. Here we report a simple one-step procedure for the catalyst-free preparation and intramolecularly catalyzed stress-relaxation of dynamic polyester networks. The procedure is based on the coupling of branched OH-end functional polyesters (functionality ≥ 3) by pyromellitic dianhydride (PMDA) or 2,5-bis(methoxy-carbonyl) benzenesulfonic acid resulting in ester linkages with, respectively, a COOH or a SO3H group in a position ortho to the ester bond. This approach leads to an efficient external catalyst-free dynamic polyester network, in which the topology rearrangements occur via a dissociative mechanism involving anhydrides. The SO3H-containing network is particularly interesting, as it shows the fastest stress relaxation and does not suffer from unwanted additional transesterification reactions, as was observed in the COOH-containing network.</p

    Fluorescent Visualization of Bond Breaking in Polymer Glasses

    Get PDF
    Mechanofluorescent polymer probes were used to visualize stresses and bond scission in polystyrene and polycarbonate. Sonication of polystyrene probes with a molar mass of 1.1 × 105 g·mol-1 in solution resulted in 30% activation after 1 h, while shorter probes showed lower activation percentages. Single-asperity sliding friction tests were performed on mechanophore-containing polystyrene and polycarbonate films. Polystyrene showed clearly visible crack formation with a correlated pattern in the friction force, penetration depth, and fluorescent activation of the mechanophore. Significant mechanophore activation in polystyrene was observed for an applied normal load of 100 mN, whereas in polycarbonate, activation only occurred at a normal load higher than 400 mN. The different degrees of activation correlate well with the toughness of polycarbonate compared to polystyrene.</p

    Benzene Tetraamide:A Covalent Supramolecular Dual Motif in Dynamic Covalent Polymer Networks

    Get PDF
    In dynamic polyamide networks, 1,2,4,5-benzene tetraamide (B4A) units act simultaneously as a dynamic covalent cross-linker and as supramolecular stacking motif. This results in materials with a rubbery plateau modulus that is about 20 times higher than that of a corresponding reference network in which the supramolecular interaction is suppressed. In branched polyamides with the same B4A dynamic motif, hydrogen bonding and stacking lead to strong and reversible supramolecular networks, whereas a branched polyamide with the nonstacking reference linker is a viscous liquid under the same conditions. Wide-angle X-ray scattering and variable-temperature infrared experiments confirm that covalent cross-linking and stacking cooperatively contribute to the dynamics of the network. Stress relaxation in the reference network is dominated by a single mode related to the dynamic covalent chemistry, whereas relaxation in the B4A network has additional modes assigned to the stacking dynamics.</p

    Dynamic covalent networks with tunable dynamicity by mixing acylsemicarbazides and thioacylsemicarbazides

    Get PDF
    Dynamic covalent networks (DCNs) use chemical bonds that break and reform at appropriate processing conditions to allow reconfiguration of the networks. Recently, the acylsemicarbazide (ASC) motif has been added to the repertoire of such dynamic covalent bonds, which is capable of hydrogen bonding as well as dynamic bond exchange. In this study, we show that its sulfur congener, thioacylsemicarbazide (TASC), also acts as a dynamic covalent bond, but exchanges at a slower rate than the ASC moiety. In addition, siloxane-based DCNs comprising either ASC or TASC motifs or a varying composition of both show tunable relaxation dynamics, which slow down with an increasing amount of TASC motifs. The reduction in stress relaxation goes hand in hand with a reduction of creep in the network and can be tuned by the ASC/TASC ratio. All networks are readily processed using compression molding and dissolve when treated with excess hydrazide in solution. The ability to control network properties and creep in dynamic covalent polymeric networks by small changes in the molecular structure of the dynamic bond allows a generalized synthetic approach while accommodating a wide temperature window for application.</p

    The solution copolymerization of styrene and maleic anhydride in a continuous stirred tank reactor and its theoretical modelling

    No full text
    The synthesis of copolymers with a narrow chemical composition distribution (CCD) often requires a technological solution to overcome composition drift. Among the possible solutions, polymerization in a continuous stirred tank reactor (CSTR) is one of the most elegant. During steady state operation, the CCD is only determined by the statistical nature of the copolymerization without any broadening as typically observed in batch reactions. In this contribution, the mathematical description of the copolymerization of styrene and maleic anhydride in a CSTR is provided and experimental data are used to estimate reactivity ratios as well as to describe the copolymer composition as a function of steady state conversion
    corecore