14 research outputs found

    BEATVIC, a body-oriented resilience therapy using kickboxing exercises for people with a psychotic disorder:a feasibility study

    Get PDF
    BACKGROUND: People with a psychotic disorder have an increased risk of becoming the victim of a crime. To prevent victimization a body-oriented resilience therapy using kickboxing exercises was developed. This study aims to explore the feasibility of the therapy, to improve the therapy protocol and to explore suitable outcomes for a RCT. METHODS: Twenty-four adults with a psychotic disorder received 20 weekly group sessions in which potential risk factors for victimization and strategies for dealing with them were addressed. Sessions were evaluated weekly. During pre and post assessment participants completed questionnaires on, among other, victimization, aggression regulation and social functioning. RESULTS: The short recruitment period indicates the interest in such an intervention and the willingness of clients to participate. Mean attendance was 85.3 and 88% of the participants completed fifteen or more sessions. The therapy protocol was assessed as adequate and exercises as relevant with some small improvements to be made. The victimization and aggression regulation questionnaires were found to be suitable outcome measurements for a subsequent RCT. CONCLUSION: The results support the feasibility of the BEATVIC therapy. Participants subjectively evaluated the intervention as helpful in their attempt to gain more self-esteem and assertiveness. With some minor changes in the protocol the effects of BEATVIC can be tested in a RCT. TRIAL REGISTRATION: The trial registration number (TRN) is 35949 (date submitted 09/11/2018). Retrospectively registered

    Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.</p> <p>Results</p> <p>More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.</p> <p>Conclusion</p> <p>We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.</p

    Inferior outcome of addition of the aminopeptidase inhibitor tosedostat to standard intensive treatment for elderly patients with aml and high risk mds

    Get PDF
    Treatment results of AML in elderly patients are unsatisfactory. We hypothesized that addition of tosedostat, an aminopeptidase inhibitor, to intensive chemotherapy may improve outcome in this population. After establishing a safe dose in a run-in phase of the study in 22 patients, 231 eligible patients with AML above 65 years of age (median 70, range 66–81) were randomly assigned in this open label randomized Phase II study to receive standard chemotherapy (3+7) with or without tosedostat at the selected daily dose of 120 mg (n = 116), days 1–21. In the second cycle, patients received cytarabine 1000 mg/m2 twice daily on days 1-6 with or without tosedostat. CR/CRi rates in the 2 arms were not significantly different (69% (95% C.I. 60–77%) vs 64% (55–73%), respectively). At 24 months, event-free survival (EFS) was 20% for the standard arm versus 12% for the tosedostat arm (Cox-p = 0.01) and overall survival (OS) 33% vs 18% respectively (p = 0.006). Infectious complications accounted for an increased early death rate in the tosedostat arm. Atrial fibrillation w

    A genome-wide association study for natural antibodies measured in blood of Canadian Holstein cows

    No full text
    Abstract Background Natural antibodies (NAb) are an important component of the innate immune system, and fight infections as a part of the first line defence. NAb are poly-reactive and can respond non-specifically to antigens. Therefore, NAb may be a key trait when evaluating an animal’s potential natural disease resistance. Variation in NAb is caused by both genetic and environmental factors. In this study genetic parameters of NAb were estimated and a genome-wide association study (GWAS) was performed to gain further understanding on the genes that are responsible for the observed genetic variation of NAb in Canadian Holsteins. Results In total, blood samples of 1327 cows from 64 farms were studied. NAb binding to keyhole limpet hemocyanin (KLH) were determined via indirect ELISA. Immunoglobulin (Ig) isotypes, IgG and IgM, were evaluated. From the sample population, 925 cows were genotyped for 45,187 markers and each individual marker was tested to detect genetic variation in NAb levels. The relationships among animals was accounted for with genomic relationship. Results show heritabilities of 0.27 ± 0.064 (IgG) and 0.31 ± 0.065 (IgM). In total, 23 SNPs were found to be associated with IgG, but no SNPs were associated with IgM (FDR p-value < 0.05). The significant SNPs were located on autosomal chromosomes 1, 20 and 21 of the cow genome. Functional annotation analysis of the positional candidate genes revealed two sets of genes with biologically relevant functions related to NAb. In one set, seven genes with crucial roles in the production of antibody in B cells were associated with the trafficking of vesicles inside the cells between organelles. In the second set, two genes among positional candidate genes were associated with isotype class-switching and somatic hypermutation of B cells. Conclusions This study demonstrated the possibility of increasing NAb through selective breeding. In addition, the effects of two candidate pathways are proposed for further investigation of NAb production in Holsteins

    A genome-wide association study for natural antibodies measured in blood of Canadian Holstein cows

    No full text
    Background: Natural antibodies (NAb) are an important component of the innate immune system, and fight infections as a part of the first line defence. NAb are poly-reactive and can respond non-specifically to antigens. Therefore, NAb may be a key trait when evaluating an animal’s potential natural disease resistance. Variation in NAb is caused by both genetic and environmental factors. In this study genetic parameters of NAb were estimated and a genome-wide association study (GWAS) was performed to gain further understanding on the genes that are responsible for the observed genetic variation of NAb in Canadian Holsteins. Results: In total, blood samples of 1327 cows from 64 farms were studied. NAb binding to keyhole limpet hemocyanin (KLH) were determined via indirect ELISA. Immunoglobulin (Ig) isotypes, IgG and IgM, were evaluated. From the sample population, 925 cows were genotyped for 45,187 markers and each individual marker was tested to detect genetic variation in NAb levels. The relationships among animals was accounted for with genomic relationship. Results show heritabilities of 0.27 ± 0.064 (IgG) and 0.31 ± 0.065 (IgM). In total, 23 SNPs were found to be associated with IgG, but no SNPs were associated with IgM (FDR p-value < 0.05). The significant SNPs were located on autosomal chromosomes 1, 20 and 21 of the cow genome. Functional annotation analysis of the positional candidate genes revealed two sets of genes with biologically relevant functions related to NAb. In one set, seven genes with crucial roles in the production of antibody in B cells were associated with the trafficking of vesicles inside the cells between organelles. In the second set, two genes among positional candidate genes were associated with isotype class-switching and somatic hypermutation of B cells. Conclusions: This study demonstrated the possibility of increasing NAb through selective breeding. In addition, the effects of two candidate pathways are proposed for further investigation of NAb production in Holsteins.</p

    Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion

    Get PDF
    The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy

    Antigen presentation by B cells enables epitope spreading across an MHC barrier

    Get PDF
    Abstract Circumstantial evidence suggests that B cells may instruct T cells to break tolerance. Here, to test this hypothesis, we used a murine model in which a single B cell clone precipitates an autoreactive response resembling systemic lupus erythematosus (SLE). The initiating clone did not need to enter germinal centers to precipitate epitope spreading. Rather, it localized to extrafollicular splenic bridging channels early in the response. Autoantibody produced by the initiating clone was not sufficient to drive the autoreactive response. Subsequent epitope spreading depended on antigen presentation and was compartmentalized by major histocompatibility complex (MHC). B cells carrying two MHC haplotypes could bridge the MHC barrier between B cells that did not share MHC. Thus, B cells directly relay autoreactivity between two separate compartments of MHC-restricted T cells, leading to inclusion of distinct B cell populations in germinal centers. Our findings demonstrate that B cells initiate and propagate the autoimmune response
    corecore