58 research outputs found

    Ringo – an R/Bioconductor package for analyzing ChIP-chip readouts

    Get PDF
    Background: Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is a high-throughput assay for DNA-protein-binding or post-translational chromatin/histone modifications. However, the raw microarray intensity readings themselves are not immediately useful to researchers, but require a number of bioinformatic analysis steps. Identified enriched regions need to be bioinformatically annotated and compared to related datasets by statistical methods. Results: We present a free, open-source R package Ringo that facilitates the analysis of ChIP-chip experiments by providing functionality for data import, quality assessment, normalization and visualization of the data, and the detection of ChIP-enriched genomic regions. Conclusion: Ringo integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It facilitates the construction of programmed analysis workflows, offers benefits in scalability, reproducibility and methodical scope of the analyses and opens up a broad selection of follow-up statistical and bioinformatic methods

    Automated in-silico detection of cell populations in flow cytometry readouts and its application to leukemia disease monitoring

    Get PDF
    BACKGROUND: Identification of minor cell populations, e.g. leukemic blasts within blood samples, has become increasingly important in therapeutic disease monitoring. Modern flow cytometers enable researchers to reliably measure six and more variables, describing cellular size, granularity and expression of cell-surface and intracellular proteins, for thousands of cells per second. Currently, analysis of cytometry readouts relies on visual inspection and manual gating of one- or two-dimensional projections of the data. This procedure, however, is labor-intensive and misses potential characteristic patterns in higher dimensions. RESULTS: Leukemic samples from patients with acute lymphoblastic leukemia at initial diagnosis and during induction therapy have been investigated by 4-color flow cytometry. We have utilized multivariate classification techniques, Support Vector Machines (SVM), to automate leukemic cell detection in cytometry. Classifiers were built on conventionally diagnosed training data. We assessed the detection accuracy on independent test data and analyzed marker expression of incongruently classified cells. SVM classification can recover manually gated leukemic cells with 99.78% sensitivity and 98.87% specificity. CONCLUSION: Multivariate classification techniques allow for automating cell population detection in cytometry readouts for diagnostic purposes. They potentially reduce time, costs and arbitrariness associated with these procedures. Due to their multivariate classification rules, they also allow for the reliable detection of small cell populations

    High-resolution transcription atlas of the mitotic cell cycle in budding yeast.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on protein-coding genes. To explore the complex transcriptome architecture underlying the budding yeast cell cycle, we used 8 bp tiling arrays to generate a 5 minute-resolution, strand-specific expression atlas of the whole genome. RESULTS: We discovered 523 antisense transcripts, of which 80 cycle or are located opposite periodically expressed mRNAs, 135 unannotated intergenic non-coding RNAs, of which 11 cycle, and 109 cell-cycle-regulated protein-coding genes that had not previously been shown to cycle. We detected periodic expression coupling of sense and antisense transcript pairs, including antisense transcripts opposite of key cell-cycle regulators, like FAR1 and TAF2. CONCLUSIONS: Our dataset presents the most comprehensive resource to date on gene expression during the budding yeast cell cycle. It reveals periodic expression of both protein-coding and non-coding RNA and profiles the expression of non-annotated RNAs throughout the cell cycle for the first time. This data enables hypothesis-driven mechanistic studies concerning the functions of non-coding RNAs

    ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data

    Get PDF
    Summary: Non-coding RNA (ncRNA) PROfiling in small RNA (sRNA)-seq (ncPRO-seq) is a stand-alone, comprehensive and flexible ncRNA analysis pipeline. It can interrogate and perform detailed profiling analysis on sRNAs derived from annotated non-coding regions in miRBase, Rfam and RepeatMasker, as well as specific regions defined by users. The ncPRO-seq pipeline performs both gene-based and family-based analyses of sRNAs. It also has a module to identify regions significantly enriched with short reads, which cannot be classified under known ncRNA families, thus enabling the discovery of previously unknown ncRNA- or small interfering RNA (siRNA)-producing regions. The ncPRO-seq pipeline supports input read sequences in fastq, fasta and color space format, as well as alignment results in BAM format, meaning that sRNA raw data from the three current major platforms (Roche-454, Illumina-Solexa and Life technologies-SOLiD) can be analyzed with this pipeline. The ncPRO-seq pipeline can be used to analyze read and alignment data, based on any sequenced genome, including mammals and plants. Availability: Source code, annotation files, manual and online version are available at http://ncpro.curie.fr/. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN

    Get PDF
    Circular RNAs (circRNAs) are a regulatory RNA class. While cancer-driving functions have been identified for single circRNAs, how they modulate gene expression in cancer is not well understood. We investigate circRNA expression in the pediatric malignancy, neuroblastoma, through deep whole-transcriptome sequencing in 104 primary neuroblastomas covering all risk groups. We demonstrate that MYCN amplification, which defines a subset of high-risk cases, causes globally suppressed circRNA biogenesis directly dependent on the DHX9 RNA helicase. We detect similar mechanisms in shaping circRNA expression in the pediatric cancer medulloblastoma implying a general MYCN effect. Comparisons to other cancers identify 25 circRNAs that are specifically upregulated in neuroblastoma, including circARID1A. Transcribed from the ARID1A tumor suppressor gene, circARID1A promotes cell growth and survival, mediated by direct interaction with the KHSRP RNA-binding protein. Our study highlights the importance of MYCN regulating circRNAs in cancer and identifies molecular mechanisms, which explain their contribution to neuroblastoma pathogenesis

    Ringo- R Investigation of NimbleGen Oligoarrays

    No full text
    The package Ringo deals with the analysis of two-color oligonucleotide microarrays used in ChIP-chip projects. The package was started to facilitate the analysis of two-color microarrays from the company NimbleGen1, but the package has a modular design, such that the platform-specific functionality is encapsulated and analogous two-color tiling arra
    • …
    corecore