14 research outputs found

    An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naïve pigs following consumption via natural feeding behavior: proof of concept

    Get PDF
    Background: Since its initial detection in May 2013, porcine epidemic diarrhea virus (PEDV) has spread rapidly throughout the US swine industry. Initially, contaminated feed was proposed as a risk factor for PEDV; however, data were not available to support this theory. Here we provide proof of concept of this risk by describing a novel means for recovering PEDV-contaminated complete feed material from commercial swine sites and conducting an in vivo experiment to prove its infectivity. Results: For on-farm detection of PEDV RNA in feed, paint rollers were used to collect material from at-risk feed bins from 3 clinically affected breeding herds. This material was tested by PCR and determined to be positive for PEDV-RNA (Ct = 19.50-22.20 range). To test infectivity, this material was pooled (Ct = 20.65) and a Treatment group of 3-week old PEDV-naïve piglets were allowed to consume it via natural feeding behavior. For the purpose of a Positive control, piglets were allowed to ingest feed spiked with stock PEDV (Ct = 18.23) while the negative control group received PEDV-free feed. Clinical signs of PEDV infection (vomiting and diarrhea) and viral shedding were observed in both the Positive control and Treatment group’ post-consumption with virus and microscopic lesions detected in intestinal samples No evidence of infection was observed in the Negative controls.Conclusions: These data provide proof of concept that contaminated complete feed can serve as a vehicle for PEDV infection of naïve pigs using natural feeding behavior

    An Evaluation of Contaminated Complete Feed as a Vehicle for Porcine Epidemic Diarrhea Virus Infection of Naïve Pigs Following Consumption Via Natural Feeding Behavior: Proof of Concept

    Get PDF
    Background: Since its initial detection in May 2013, porcine epidemic diarrhea virus (PEDV) has spread rapidly throughout the US swine industry. Initially, contaminated feed was proposed as a risk factor for PEDV; however, data were not available to support this theory. Here we provide proof of concept of this risk by describing a novel means for recovering PEDV-contaminated complete feed material from commercial swine sites and conducting an in vivo experiment to prove its infectivity. Results: For on-farm detection of PEDV RNA in feed, paint rollers were used to collect material from at-risk feed bins from 3 clinically affected breeding herds. This material was tested by PCR and determined to be positive for PEDV-RNA (Ct = 19.50-22.20 range). To test infectivity, this material was pooled (Ct = 20.65) and a Treatment group of 3-week old PEDV-naïve piglets were allowed to consume it via natural feeding behavior. For the purpose of a Positive control, piglets were allowed to ingest feed spiked with stock PEDV (Ct = 18.23) while the negative control group received PEDV-free feed. Clinical signs of PEDV infection (vomiting and diarrhea) and viral shedding were observed in both the Positive control and Treatment group’ post-consumption with virus and microscopic lesions detected in intestinal samples No evidence of infection was observed in the Negative controls.Conclusions: These data provide proof of concept that contaminated complete feed can serve as a vehicle for PEDV infection of naïve pigs using natural feeding behavior

    Global Oceans

    Get PDF
    Global Oceans is one chapter from the State of the Climate in 2019 annual report and is avail-able from https://doi.org/10.1175/BAMS-D-20-0105.1. Compiled by NOAA’s National Centers for Environmental Information, State of the Climate in 2019 is based on contr1ibutions from scien-tists from around the world. It provides a detailed update on global climate indicators, notable weather events, and other data collected by environmental monitoring stations and instru-ments located on land, water, ice, and in space. The full report is available from https://doi.org /10.1175/2020BAMSStateoftheClimate.1

    Influenza Herd-Level Prevalence and Seasonality in Breed-to-Wean Pig Farms in the Midwestern United States

    Get PDF
    Influenza is a costly disease for pig producers and understanding its epidemiology is critical to control it. In this study, we aimed to estimate the herd-level prevalence and seasonality of influenza in breed-to-wean pig farms, evaluate the correlation between influenza herd-level prevalence and meteorological conditions, and characterize influenza genetic diversity over time. A cohort of 34 breed-to-wean farms with monthly influenza status obtained over a 5-year period in piglets prior to wean was selected. A farm was considered positive in a given month if at least one oral fluid tested influenza positive by reverse transcriptase polymerase chain reaction. Influenza seasonality was assessed combining autoregressive integrated moving average (ARIMA) models with trigonometric functions as covariates. Meteorological conditions were gathered from local land-based weather stations, monthly aggregated and correlated with influenza herd-level prevalence. Influenza herd-level prevalence had a median of 28% with a range from 7 to 57% and followed a cyclical pattern with levels increasing during fall, peaking in both early winter (December) and late spring (May), and decreasing in summer. Influenza herd-level prevalence was correlated with mean outdoor air absolute humidity (AH) and temperature. Influenza genetic diversity was substantial over time with influenza isolates belonging to 10 distinct clades from which H1 delta 1 and H1 gamma 1 were the most common. Twenty-one percent of farms had three different clades co-circulating over time, 18% of farms had two clades, and 41% of farms had one clade. In summary, our study showed that influenza had a cyclical pattern explained in part by air AH and temperature changes over time, and highlighted the importance of active surveillance to identify high-risk periods when strategic control measures for influenza could be implemented

    Relationships among Fecal, Air, Oral, and Tracheal Microbial Communities in Pigs in a Respiratory Infection Disease Model

    No full text
    The association of the lower respiratory tract microbiome in pigs with that of other tissues and environment is still unclear. This study aimed to describe the microbiome of tracheal and oral fluids, air, and feces in the late stage of Mycoplasma hyopneumoniae infection in pigs, and assess the association between the tracheal microbiome and those from air, feces, and oral fluids. Tracheal fluids (n = 73), feces (n = 71), oropharyngeal fluids (n = 8), and air (n = 12) were collected in seeder pigs (inoculated with M. hyopneumoniae) and contact pigs (113 days post exposure to seeder pigs). After DNA extraction, the V4 region from 16S rRNA gene was sequenced and reads were processed using Divisive Amplicon Denoising Algorithm (DADA2). Clostridium and Streptococcus were among the top five genera identified in all sample types. Mycoplasma hyopneumoniae in tracheal fluids was associated with a reduction of diversity and increment of M. hyorhinis, Glaesserella parasuis, and Pasteurella multocida in tracheal fluids, as well as a reduction of Ruminiclostridium, Barnesiella, and Lactobacillus in feces. Air contributed in a greater proportion to bacteria in the trachea compared with feces and oral fluids. In conclusion, evidence suggests the existence of complex interactions between bacterial communities from distant and distinct niches

    An Assessment of Diagnostic Assays and Sample Types in the Detection of an Attenuated Genotype 5 African Swine Fever Virus in European Pigs over a 3-Month Period

    No full text
    African swine fever virus causes hemorrhagic disease in swine. Attenuated strains are reported in Africa, Europe, and Asia. Few studies on the diagnostic detection of attenuated ASF viruses are available. Two groups of pigs were inoculated with an attenuated ASFV. Group 2 was also vaccinated with an attenuated porcine reproductive and respiratory syndrome virus vaccine. Commercially available ELISA, as well as extraction and qPCR assays, were used to detect antibodies in serum and oral fluids (OF) and nucleic acid in buccal swabs, tonsillar scrapings, OF, and blood samples collected over 93 days, respectively. After 12 dpi, serum (88.9% to 90.9%) in Group 1 was significantly better for antibody detection than OF (0.7% to 68.4%). Group 1′s overall qPCR detection was highest in blood (48.7%) and OF (44.2%), with the highest detection in blood (85.2%) from 8 to 21 days post inoculation (dpi) and in OF (83.3%) from 1 to 7 dpi. Group 2′s results were not significantly different from Group 1, but detection rates were lower overall. Early detection of attenuated ASFV variants requires active surveillance in apparently healthy animals and is only reliable at the herd level. Likewise, antibody testing will be needed to prove freedom from disease
    corecore