254 research outputs found

    Basal conditions and glacier motion during the winter/spring transition, Worthington Glacier, Alaska, U.S.A.

    Get PDF
    Observations of the motion and basal conditions of Worthington Glacier, Alaska, U.S.A., during late-winter and spring melt seasons revealed no evidence of a relationship between water pressure and sliding velocity. Measurements included borehole water levels (used as a proxy for basal water pressure), surface velocity, englacial deformation, sliding velocity, and time-lapse videography of subglacial water flow and bed characteristics. The boreholes were spaced 10-15 m apart; six were instrumented in 1997, and five in 1998. In late winter, the water-pressure field showed spatially synchronous fluctuations with a diurnal cycle. The glacier\u27s motion was relatively slow and non-cyclic. In spring, the motion was characterized by rapid, diurnally varying sliding. The basal water pressure displayed no diurnal signal, but showed high-magnitude fluctuations and often strong gradients between holes. This transition in character of the basal water-pressure field may represent a seasonal evolution of the drainage system from linked cavities to a network of isolated patches and conduits. These changes occurred as the glacier was undergoing a season-velocity peak. The apparent lack of correlation between sliding velocity and water pressure suggests that local-scale water pressure does not directly control sliding during late winter or early in the melt season

    Maneuver Acoustic Flight Test of the Bell 430 Helicopter

    Get PDF
    A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test

    Significance of trends toward earlier snowmelt runoff, Columbia and Missouri Basin headwaters, western United States

    Get PDF
    We assess changes in runoff timing over the last 55 years at 21 gages unaffected by human influences, in the headwaters of the Columbia-Missouri Rivers. Linear regression models and tests for significance that control for ‘‘false discoveries’’ of many tests, combined with a conceptual runoff response model, were used to examine the detailed structure of spring runoff timing. We conclude that only about one third of the gages exhibit significant trends with time but over half of the gages tested show significant relationships with discharge. Therefore, runoff timing is more significantly correlated with annual discharge than with time. This result differs from previous studies of runoff in the western USA that equate linear time trends to a response to global warming. Our results imply that predicting future snowmelt runoff in the northern Rockies will require linking climate mechanisms controlling precipitation, rather than projecting response to simple linear increases in temperature

    A Transparent Conductive Adhesive Laminate Electrode for High-Efficiency Organic-Inorganic Lead Halide Perovskite Solar Cells

    Get PDF
    A self-adhesive laminate solar-cell electrode is presented based on a metal grid embedded in a polymer film (x–y conduction) and set in contact with the active layer using a pressure-sensitive adhesive containing a very low quantity (1.8%) of organic conductor, which self-organizes to provide z conduction to the grid. This ITO-free material performs in an identical fashion to evaporated gold in high-efficiency perovskite solar cells

    Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish

    Get PDF
    Animals modulate their arousal state to ensure that their sensory responsiveness and locomotor activity match environmental demands. Neuropeptides can regulate arousal, but studies of their roles in vertebrates have been constrained by the vast array of neuropeptides and their pleiotropic effects. To overcome these limitations, we systematically dissected the neuropeptidergic modulation of arousal in larval zebrafish. We quantified spontaneous locomotor activity and responsiveness to sensory stimuli after genetically induced expression of seven evolutionarily conserved neuropeptides, including adenylate cyclase activating polypeptide 1b (adcyap1b), cocaine-related and amphetamine-related transcript (cart), cholecystokinin (cck), calcitonin gene-related peptide (cgrp), galanin, hypocretin, and nociceptin. Our study reveals that arousal behaviors are dissociable: neuropeptide expression uncoupled spontaneous activity from sensory responsiveness, and uncovered modality-specific effects upon sensory responsiveness. Principal components analysis and phenotypic clustering revealed both shared and divergent features of neuropeptidergic functions: hypocretin and cgrp stimulated spontaneous locomotor activity, whereas galanin and nociceptin attenuated these behaviors. In contrast, cart and adcyap1b enhanced sensory responsiveness yet had minimal impacts on spontaneous activity, and cck expression induced the opposite effects. Furthermore, hypocretin and nociceptin induced modality-specific differences in responsiveness to changes in illumination. Our study provides the first systematic and high-throughput analysis of neuropeptidergic modulation of arousal, demonstrates that arousal can be partitioned into independent behavioral components, and reveals novel and conserved functions of neuropeptides in regulating arousal

    PoLAR-FIT: Pliocene Landscapes and Arctic Remains—Frozen in Time

    Get PDF
    This short summary presents selected results of an ongoing investigation into the feedbacks that contribute to amplified Arctic warming. The consequences of warming for Arctic biodiversity and landscape response to global warmth are currently being interpreted. Arctic North American records of large-scale landscape and paleoenvironmental change during the Pliocene are exquisitely preserved and locked in permafrost, providing an opportunity for paleoenvironmental and faunal reconstruction with unprecedented quality and resolution. During a period of mean global temperatures only ~2.5°C above modern, the Pliocene molecular, isotopic, tree-ring, paleofaunal, and paleofloral records indicate that the high Arctic mean annual temperature was 11°C–19°C above modern values, pointing to a much shallower latitudinal temperature gradient than exists today. It appears that the intense Neogene warming caused thawing and weathering to liberate sediment and create a continuous and thick (>2.5 km in places) clastic wedge from at least Banks Island to Meighen Island to form a coastal plain that provided a highway for camels and other mammals to migrate and evolve in the high Arctic. In this summary we highlight the opportunities that exist for research on these and related topics with the PoLAR-FIT community.RÉSUMÉCe bref rĂ©sumĂ© prĂ©sente les rĂ©sultats choisis d'une enquĂȘte en cours sur les dĂ©clencheurs qui contribuent Ă  l’amplification du rĂ©chauffement de l'Arctique. Les consĂ©quences du rĂ©chauffement sur la biodiversitĂ© arctique et de la rĂ©ponse du paysage au rĂ©chauffement climatique sont en cours d’ĂȘtre interprĂ©tĂ©. Des dossiers nord-amĂ©ricains de paysage Ă  grande Ă©chelle et le changement palĂ©oenvironnementales durant le PliocĂšne sont exceptionnellement prĂ©servĂ©s et scellĂ©es dans un Ă©tat de congĂ©lation qui fournissant une occasion pour la reconstruction palĂ©oenvironnementale et faunistique avec une qualitĂ© et une rĂ©solution sans prĂ©cĂ©dent. Pendent une pĂ©riode de rĂ©chauffement global seulement ~2,5°C au-dessus de moderne les dossiers, molĂ©culaire, isotopique, annaux de croissance, palĂ©ofaunistique et palĂ©ovĂ©gĂ©tation indiquent que l'Arctique a connu une augmentation de la tempĂ©rature annuelle moyenne de 11°C–19°C au-dessus de moderne, en montrant un inferieur gradient de tempĂ©rature latitudinal qu'aujourd'hui. Il semble que le rĂ©chauffement intense pendent le NĂ©ogĂšne a provoquĂ© la dĂ©congĂ©lation et erosion pour libĂ©rer les sĂ©diments et crĂ©er une plaine cĂŽtiĂšre continuel et Ă©paisse (> 2,5 km dans lieux) qui a fourni une route pour les chameaux et autres mammifĂšres pour migrer et Ă©voluer dans l’Haut-Arctique. Dans ce rĂ©sumĂ©, nous soulignons les opportunitĂ©s qui existent pour la recherche sur ces sujets et les sujets connexes avec la communautĂ© PoLAR-FIT

    Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools

    Get PDF
    Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5–7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior. SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior

    Cardiac magnetic resonance left ventricular filling pressure is linked to symptoms, signs and prognosis in heart failure

    Get PDF
    Aims Left ventricular filling pressure (LVFP) can be estimated from cardiovascular magnetic resonance (CMR). We aimed to investigate whether CMR-derived LVFP is associated with signs, symptoms, and prognosis in patients with recently diagnosed heart failure (HF). Methods and results This study recruited 454 patients diagnosed with HF who underwent same-day CMR and clinical assessment between February 2018 and January 2020. CMR-derived LVFP was calculated, as previously, from long- and short-axis cines. CMR-derived LVFP association with symptoms and signs of HF was investigated. Patients were followed for median 2.9 years (interquartile range 1.5–3.6 years) for major adverse cardiovascular events (MACE), defined as the composite of cardiovascular death, HF hospitalization, non-fatal stroke, and non-fatal myocardial infarction. The mean age was 62 ± 13 years, 36% were female (n = 163), and 30% (n = 135) had raised LVFP. Forty-seven per cent of patients had an ejection fraction < 40% during CMR assessment. Patients with raised LVFP were more likely to have pleural effusions [hazard ratio (HR) 3.2, P = 0.003], orthopnoea (HR 2.0, P = 0.008), lower limb oedema (HR 1.7, P = 0.04), and breathlessness (HR 1.7, P = 0.01). Raised CMR-derived LVFP was associated with a four-fold risk of HF hospitalization (HR 4.0, P < 0.0001) and a three-fold risk of MACE (HR 3.1, P < 0.0001). In the multivariable model, raised CMR-derived LVFP was independently associated with HF hospitalization (adjusted HR 3.8, P = 0.0001) and MACE (adjusted HR 3.0, P = 0.0001). Conclusions Raised CMR-derived LVFP is strongly associated with symptoms and signs of HF. In addition, raised CMR-derived LVFP is independently associated with subsequent HF hospitalization and MACE

    Optimal dosing of dihydroartemisinin-piperaquine for seasonal malaria chemoprevention in young children.

    Get PDF
    Young children are the population most severely affected by Plasmodium falciparum malaria. Seasonal malaria chemoprevention (SMC) with amodiaquine and sulfadoxine-pyrimethamine provides substantial benefit to this vulnerable population, but resistance to the drugs will develop. Here, we evaluate the use of dihydroartemisinin-piperaquine as an alternative regimen in 179 children (aged 2.33-58.1 months). Allometrically scaled body weight on pharmacokinetic parameters of piperaquine result in lower drug exposures in small children after a standard mg per kg dosage. A covariate-free sigmoidal EMAX-model describes the interval to malaria re-infections satisfactorily. Population-based simulations suggest that small children would benefit from a higher dosage according to the WHO 2015 guideline. Increasing the dihydroartemisinin-piperaquine dosage and extending the dose schedule to four monthly doses result in a predicted relative reduction in malaria incidence of up to 58% during the high transmission season. The higher and extended dosing schedule to cover the high transmission period for SMC could improve the preventive efficacy substantially
    • 

    corecore