2,278 research outputs found
Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States
Particle pH is a critical but poorly constrained quantity that affects many aerosol processes and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 pH as a function of geographical location and altitude, focusing on the northeastern U.S., based on aircraft measurements from the Wintertime Investigation of Transport, Emissions, and Reactivity campaign (1 February to 15 March 2015). Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to observed partitioning of inorganic nitrate between the gas and particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic phase separations or nitrate measurement uncertainties associated with low concentrations (nitrate \u3c 1 µg m−3). Including refractory ions in the pH calculations did not improve model predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle pH for altitudes up to 5000 m ranged between −0.51 and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96, similar to those reported for the southeastern U.S. and eastern Mediterranean. This expansive aircraft data set is used to investigate causes in variability in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of temperatures (−21 to 19°C), RH (20 to 95%), inorganic gas, and particle concentrations and also provides further evidence that particles with low pH are ubiquitous
Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations
Nocturnal dinitrogen pentoxide (N2O5) heterogeneous chemistry impacts regional air quality and the distribution and lifetime of tropospheric oxidants. Formed from the oxidation of nitrogen oxides, N2O5 is heterogeneously lost to aerosol with a highly variable reaction probability, γ(N2O5), dependent on aerosol composition and ambient conditions. Reaction products include soluble nitrate (HNO3 or NO3−) and nitryl chloride (ClNO2). We report the first‐ever derivations of γ(N2O5) from ambient wintertime aircraft measurements in the critically important nocturnal residual boundary layer. Box modeling of the 2015 Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign over the eastern United States derived 2,876 individual γ(N2O5) values with a median value of 0.0143 and range of 2 × 10−5 to 0.1751. WINTER γ(N2O5) values exhibited the strongest correlation with aerosol water content, but weak correlations with other variables, such as aerosol nitrate and organics, suggesting a complex, nonlinear dependence on multiple factors, or an additional dependence on a nonobserved factor. This factor may be related to aerosol phase, morphology (i.e., core shell), or mixing state, none of which are commonly measured during aircraft field studies. Despite general agreement with previous laboratory observations, comparison of WINTER data with 14 literature parameterizations (used to predict γ(N2O5) in chemical transport models) confirms that none of the current methods reproduce the full range of γ(N2O5) values. Nine reproduce the WINTER median within a factor of 2. Presented here is the first field‐based, empirical parameterization of γ(N2O5), fit to WINTER data, based on the functional form of previous parameterizations
Semiconductor thermal and electrical properties decoupled by localized phonon resonances
Thermoelectric materials convert heat into electricity through thermally
driven charge transport in solids, or vice versa for cooling. To be competitive
with conventional energy-generation technologies, a thermoelectric material
must possess the properties of both an electrical conductor and a thermal
insulator. However, these properties are normally mutually exclusive because of
the interconnection of the scattering mechanisms for charge carriers and
phonons. Recent theoretical investigations on sub-device scales have revealed
that silicon membranes covered by nanopillars exhibit a multitude of local
phonon resonances, spanning the full spectrum, that couple with the
heat-carrying phonons in the membrane and collectively cause a reduction in the
in-plane thermal conductivitywhile, in principle, not affecting the
electrical properties because the nanopillars are external to the pathway of
voltage generation and charge transport. Here this effect is demonstrated
experimentally for the first time by investigating device-scale suspended
silicon membranes with GaN nanopillars grown on the surface. The nanopillars
cause up to 21 % reduction in the thermal conductivity while the electrical
conductivity and the Seebeck coefficient remain unaffected, thus demonstrating
an unprecedented decoupling in the semiconductor's thermoelectric properties.
The measured thermal conductivity behavior for coalesced nanopillars and
corresponding lattice-dynamics calculations provide further evidence that the
reductions are mechanistically tied to the phonon resonances. This finding
breaks a longstanding trade-off between competing properties in
thermoelectricity and paves the way for engineered high-efficiency solid-state
energy recovery and cooling
Microwave Near-Field Imaging of Two-Dimensional Semiconductors
Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS_2 and n- and p-doped WSe_2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects
Microwave Near-Field Imaging of Two-Dimensional Semiconductors
Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS_2 and n- and p-doped WSe_2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects
Absolute Energy Measurements with Superconducting Transition-Edge Sensors for Muonic X-ray Spectroscopy at 44 keV
Superconducting transition-edge sensor (TES) microcalorimeters have great
utility in x-ray applications owing to their high energy resolution, good
collecting efficiency and the feasibility of being multiplexed into large
arrays. In this work, we develop hard x-ray TESs to measure the absolute
energies of muonic-argon (-Ar) transition lines around 44 keV and 20 keV.
TESs with sidecar absorbers of different heat capacities were fabricated and
characterized for their energy resolution and calibration uncertainty. We
achieved ~ 1 eV absolute energy measurement accuracy at 44 keV, and < 12 eV
energy resolution at 17.5 keV
A Tabletop X-Ray Tomography Instrument for Nanometer-Scale Imaging: Integration of a Scanning Electron Microscope with a Transition-Edge Sensor Spectrometer
X-ray nanotomography is a powerful tool for the characterization of nanoscale
materials and structures, but is difficult to implement due to competing
requirements on X-ray flux and spot size. Due to this constraint,
state-of-the-art nanotomography is predominantly performed at large synchrotron
facilities. Compact X-ray nanotomography tools operated in standard analysis
laboratories exist, but are limited by X-ray optics and destructive sample
preparation techniques. We present a laboratory-scale nanotomography instrument
that achieves nanoscale spatial resolution while changing the limitations of
conventional tomography tools. The instrument combines the electron beam of a
scanning electron microscope (SEM) with the precise, broadband X-ray detection
of a superconducting transition-edge sensor (TES) microcalorimeter. The
electron beam generates a highly focused X-ray spot in a metal target, while
the TES spectrometer isolates target photons with high signal-to-noise. This
combination of a focused X-ray spot, energy-resolved X-ray detection, and
unique system geometry enable nanoscale, element-specific X-ray imaging in a
compact footprint. The proof-of-concept for this approach to X-ray
nanotomography is demonstrated by imaging 160 nm features in three dimensions
in a Cu-SiO2 integrated circuit, and a path towards finer resolution and
enhanced imaging capabilities is discussed.Comment: The following article has been submitted to Physical Review Applie
A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray
We report on the 1,000-element transition-edge sensor (TES) x-ray
spectrometer implementation of the TOMographic Circuit Analysis Tool (TOMCAT).
TOMCAT combines a high spatial resolution scanning electron microscope (SEM)
with a highly efficient and pixelated TES spectrometer to reconstruct
three-dimensional maps of nanoscale integrated circuits (ICs). A 240-pixel
prototype spectrometer was recently used to reconstruct ICs at the 130 nm
technology node, but to increase imaging speed to more practical levels, the
detector efficiency needs to be improved. For this reason, we are building a
spectrometer that will eventually contain 3,000 TES microcalorimeters read out
with microwave superconducting quantum interference device (SQUID)
multiplexing, and we currently have commissioned a 1,000 TES subarray. This
still represents a significant improvement from the 240-pixel system and allows
us to begin characterizing the full spectrometer performance. Of the 992
maximimum available readout channels, we have yielded 818 devices, representing
the largest number of TES x-ray microcalorimeters simultaneously read out to
date. These microcalorimeters have been optimized for pulse speed rather than
purely energy resolution, and we measure a FWHM energy resolution of 14 eV at
the 8.0 keV Cu K line.Comment: 5 pages, 4 figures, submitted to IEEE Transactions on Applied
Superconductivit
Antigen-driven colonic inflammation is associated with development of dysplasia in primary sclerosing cholangitis
© The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Primary sclerosing cholangitis (PSC) is an immune-mediated disease of the bile ducts that co-occurs with inflammatory bowel disease (IBD) in almost 90% of cases. Colorectal cancer is a major complication of patients with PSC and IBD, and these patients are at a much greater risk compared to patients with IBD without concomitant PSC. Combining flow cytometry, bulk and single-cell transcriptomics, and T and B cell receptor repertoire analysis of right colon tissue from 65 patients with PSC, 108 patients with IBD and 48 healthy individuals we identified a unique adaptive inflammatory transcriptional signature associated with greater risk and shorter time to dysplasia in patients with PSC. This inflammatory signature is characterized by antigen-driven interleukin-17A (IL-17A)+ forkhead box P3 (FOXP3)+ CD4 T cells that express a pathogenic IL-17 signature, as well as an expansion of IgG-secreting plasma cells. These results suggest that the mechanisms that drive the emergence of dysplasia in PSC and IBD are distinct and provide molecular insights that could guide prevention of colorectal cancer in individuals with PSC.This work was supported by the Leona M. and Harry B. Helmsley Charitable trust (SHARE), the Digestive Diseases Research Core Center C-IID P30 DK42086 at the University of Chicago, the PSC Partners Seeking a Cure Canada and the Sczholtz Family Foundation. K.R.M. is supported by grant no. NS124187. S.C.S. is supported by an American Gastroenterological Association Research Scholar Award, Veterans Affairs Career Development Award (no. ICX002027A01) and the San Diego Digestive Diseases Research Center (no. P30 DK120515). C.Q. is supported by the BBSRC Core Strategic Programme Grant (BB/CSP1720/1, BBS/E/T/000PR9818 and BBS/E/T/000PR9817). I.H.J. is supported by a Rosalind Franklin Fellowship from the University of Groningen and a Netherlands Organization for Scientific Research VIDI grant no. 016.171.047. D.G.S. is supported by grant no. F30DK121470.info:eu-repo/semantics/publishedVersio
- …