10 research outputs found

    Insecticides for Mosquito Control: Improving and Validating Methods to Strengthen the Evidence Base

    Get PDF
    Efforts to eliminate vector-borne diseases, for example malaria which caused an estimated 619,000 deaths in 2021 [1] or arboviral diseases such as dengue and zika [2], rely heavily on the use of vector control tools. The toolbox available to combat insect vectors of disease is growing through improvements to existing approaches and new, emerging, technologies. New chemistries are being developed to target pyrethroid-resistant malaria vectors, for use in conventional tools such as insecticide-treated nets (ITNs) and indoor residual sprays (IRS), as well as through innovative means of deployment such as attractive targeted sugar baits (ATSB), passive emanators and eave tubes. Rear and release strategies to control Aedes vectors of arboviruses are under pilot evaluation, including versions of the sterile insect technique (SIT) and the use of Wolbachia symbionts for population control or replacement. These tools are also being piloted to urgently combat the expansion of Anopheles stephensi in Africa. The decision to deploy new vector control tools or approaches on an operational level should be supported by robust entomological evidence to demonstrate efficacy, comprising data collected using appropriate and validated methods. A strong evidence base can also guide effective operational deployment decisions. The Insects Special Issue “Insecticides for Mosquito Control: Strengthening the Evidence Base” presents original research into developing and characterising new vector control products, as well as understanding and monitoring insecticide resistance. Review articles explore the impact of insecticide resistance and offer guidance on insecticide choice in the face of pyrethroid resistance. Consensus methodologies are presented, in the form of standard operating procedures (SOPs) designed to be adopted and used to generate reproducible data that can be compared and interpreted across and between studies. It is hoped that this Special Issue offers inspiration and guidance on how consistent data can be generated to inform more effective development, evaluation and use of new and existing vector control tools

    A qualitative look at bed net access and use in Burkina Faso, Mozambique, Nigeria, and Rwanda following piloted distributions of dual-active ingredient insecticide-treated nets

    Get PDF
    Background: Universal coverage with insecticide-treated nets (ITNs) is important for malaria control and elimination. The emergence and intensification of insecticide resistance threatens progress made through the deployment of these interventions and has required the development of newer, more expensive ITN types. Understanding malaria prevention behaviour, including barriers and facilitators to net access and use, can support effective decision-making for the promotion and distribution of ITNs. Methods: In-depth interviews and focus group discussions were conducted in 3 to 4 villages per district, in 13 districts across Burkina Faso, Mozambique, Nigeria and Rwanda from 2019 to 2022. Interviews were conducted in the local language, translated and transcribed in English, French or Portuguese. Transcripts were coded and analysed using Nvivo and ATLAS.ti. Results: ITNs were obtained from mass distribution campaigns, antenatal care and immunization visits, and purchased on the private market in some locations. While there were divergent perspectives in whether the number of distributed nets were adequate, participants consistently expressed concerns of bias, discrimination, and a lack of transparency with the distribution process. ITNs were frequently used alongside other malaria prevention methods. The primary motivation for use was malaria prevention. While some participants reported using nets nightly throughout the year, other participants reported seasonal use, both due to the perceived higher density of mosquitoes and discomfort of sleeping under a net in the increased heat. Other barriers to consistent net use included activities that take place away from the home, sleeping patterns and arrangements, and sensitivity to the insecticides on the nets. Conclusions: ITNs remain an important malaria control intervention. To ensure adequate and increased net access, distribution campaigns should consider family structures, available sleeping spaces, and other bed sharing preferences when identifying the number of nets needed for distribution. In addition, campaigns should allow for multiple options for net distribution points and timing to accommodate households remote to health services. Continuous distribution channels and complimentary distribution through the private sector could help fill gaps in coverage. Solutions are needed for outdoor malaria transmission, including alternative designs for ITNs, and improving access to complementary personal protective measures

    Insecticides for Mosquito Control: Improving and Validating Methods to Strengthen the Evidence Base

    No full text
    Efforts to eliminate vector-borne diseases, for example malaria which caused an estimated 619,000 deaths in 2021 [...

    Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol

    No full text
    Background: Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. Methods: A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6–59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. Discussion: By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies

    MINT-data-v20230208

    No full text
    A public repository for the model simulation data used in MINT, the malaria intervention tool, found here. This dataset contains 2,540,160 model simulations from a malaria transmission dynamics model varying mosquito bionomics, malaria prevalence, transmission seasonality, history of insecticide-treated nets and indoor residual spraying, and projected vector control coverage. The dataset was created by running the model, varying parameters to represent the diversity of settings in malaria-endemic sub-Saharan Africa, and the projections resulting from these simulations are incorporated into Version 2 of the online malaria decision-making tool MINT. Full details of this update to MINT can be found in the article "Projecting Epidemiological Benefit of Pyrethroid-Pyrrole Insecticide Treated Nets Against Malaria" (Churcher et al. 2023)
    corecore