151 research outputs found

    Species-Specific Effects of Woody Litter on Seedling Emergence and Growth of Herbaceous Plants

    Get PDF
    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest—evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species—and litter amount—shallow (4 mm), deep (12 mm) and leachate—on seedling emergence and biomass of three understorey species. The effect of litter amount on seedling emergence was highly dependent on litter type; while spruce needle litter had a significant negative effect that increased with depth, seedling emergence in the presence of hazel broadleaf litter did not differ from control pots containing no litter. Mixed litter of both species also had a negative effect on seedling emergence that was intermediate compared to the single-species treatments. Spruce litter had a marginally positive (shallow) or neutral effect (deep) on seedling biomass, while hazel and mixed litter treatments had significant positive effects on biomass that increased with depth. We found non-additive effects of litter mixtures on seedling biomass indicating that high quality hazel litter can reduce the negative effects of spruce. Hazel litter does not inhibit seedling emergence; it increases seedling growth, and creates better conditions for seedling growth in mixtures by reducing the suppressive effect of spruce litter, having a positive effect on understorey species richness

    Integration of unaccompanied migrant youth in the United States: a call for research

    Get PDF
    Between October 2013 and July 2016, over 156,000 children travelling without their guardians were apprehended at the U.S.–Mexico border and transferred to the care of the Office of Refugee Resettlement (ORR). During that same period, ORR placed over 123,000 unaccompanied migrant youth – predominantly from Central America – with a parent or other adult sponsor residing in the U.S. Following placement, local communities are tasked with integrating migrant youth, many of whom experience pre- and in-transit migration traumas, family separation, limited/interrupted schooling, and unauthorised legal status, placing them at heightened risk for psychological distress, academic disengagement, maltreatment, and human trafficking. Nonetheless, fewer than 10% of young people receive formal post-release services (PRS). This paper addresses the paucity of research on the experiences of the 90% of children and youth without access to PRS. To bridge this gap, this article: (a) describes the post-release experiences of unaccompanied youth, focusing on legal, family, health, and educational contexts; (b) identifies methodological and ethical challenges and solutions in conducting research with this population of young people and their families; and (c) proposes research to identify structural challenges to the provision of services and to inform best practices in support of unaccompanied youth

    How fungi’s knack for networking boosts ecological recovery after bushfires

    Get PDF
    The unprecedented bushfires that struck the east coast of Australia this summer killed an estimated one billion animals across millions of hectares. Scorched landscapes and animal corpses brought into sharp relief what climate-driven changes to wildfire mean for Australia’s plants and animals. Yet the effects of fire go much deeper, quite literally, to a vast and complex underground world that we know stunningly little about, including organisms that might be just as vulnerable to fire, and vital to Australia’s ecological recovery: the fungi

    Advances in restoration ecology: rising to the challenges of the coming decades

    Get PDF
    Simultaneous environmental changes challenge biodiversity persistence and human wellbeing. The science and practice of restoration ecology, in collaboration with other disciplines, can contribute to overcoming these challenges. This endeavor requires a solid conceptual foundation based in empirical research which confronts, tests and influences theoretical developments. We review conceptual developments in restoration ecology over the last 30 years. We frame our review in the context of changing restoration goals which reflect increased societal awareness of the scale of environmental degradation and the recognition that inter-disciplinary approaches are needed to tackle environmental problems. Restoration ecology now encompasses facilitative interactions and network dynamics, trophic cascades, and above- and below ground linkages. It operates in a non-equilibrium, alternative states framework, at the landscape scale, and in response to changing environmental, economic and social conditions. Progress has been marked by conceptual advances in the fields of trait-environment relationships, community assembly, and understanding the links between biodiversity and ecosystem functioning. Conceptual and practical advances have been enhanced by applying evolving technologies, including treatments to increase seed germination and overcome recruitment bottlenecks, high throughput DNA sequencing to elucidate soil community structure and function, and advances in satellite technology and GPS tracking to monitor habitat use. The synthesis of these technologies with systematic reviews of context dependencies in restoration success, model based analyses and consideration of complex socio-ecological systems will allow generalizations to inform evidence based interventions. Ongoing challenges include setting realistic, socially acceptable goals for restoration under changing environmental conditions, and prioritizing actions in an increasingly space-competitive world. Ethical questions also surround the use of genetically modified material, translocations, taxon substitutions, and de-extinction, in restoration ecology. Addressing these issues, as the Ecological Society of America looks to its next century, will require current and future generations of researchers and practitioners, including economists, engineers, philosophers, landscape architects, social scientists and restoration ecologists, to work together with communities and governments to rise to the environmental challenges of the coming decades

    C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 expression and formation of C-terminal TDP-43 fragmentation and accumulation in the cytoplasm. Recent studies have shown that TDP-43 can accumulate in RNA stress granules (SGs) in response to cell stresses and this could be associated with subsequent formation of TDP-43 ubiquinated protein aggregates. However, the initial mechanisms controlling endogenous TDP-43 accumulation in SGs during chronic disease are not understood. In this study we investigated the mechanism of TDP-43 processing and accumulation in SGs in SH-SY5Y neuronal-like cells exposed to chronic oxidative stress. Cell cultures were treated overnight with the mitochondrial inhibitor paraquat and examined for TDP-43 and SG processing.</p> <p>Results</p> <p>We found that mild stress induced by paraquat led to formation of TDP-43 and HuR-positive SGs, a proportion of which were ubiquitinated. The co-localization of TDP-43 with SGs could be fully prevented by inhibition of c-Jun N-terminal kinase (JNK). JNK inhibition did not prevent formation of HuR-positive SGs and did not prevent diffuse TDP-43 accumulation in the cytosol. In contrast, ERK or p38 inhibition prevented formation of both TDP-43 and HuR-positive SGs. JNK inhibition also inhibited TDP-43 SG localization in cells acutely treated with sodium arsenite and reduced the number of aggregates per cell in cultures transfected with C-terminal TDP-43 162-414 and 219-414 constructs.</p> <p>Conclusions</p> <p>Our studies are the first to demonstrate a critical role for kinase control of TDP-43 accumulation in SGs and may have important implications for development of treatments for FTD and ALS, targeting cell signal pathway control of TDP-43 aggregation.</p

    Molecular Epidemiology of Anthrax Cases Associated with Recreational Use of Animal Hides and Yarn in the United States

    Get PDF
    To determine potential links between the clinical isolate to animal products and their geographic origin, we genotyped (MLVA-8, MVLA-15, and canSNP analysis) 80 environmental and 12 clinical isolates and 2 clinical specimens from five cases of anthrax (California in 1976 [n = 1], New York in 2006 [n = 1], Connecticut in 2007 [n = 2], and New Hampshire in 2009[n = 1]) resulting from recreational handling of animal products. For the California case, four clinical isolates were identified as MLVA-8 genotype (GT) 76 and in the canSNP A.Br.Vollum lineage, which is consistent with the Pakistani origin of the yarn. Twenty eight of the California isolates were in the A.Br.Vollum canSNP lineage and one isolate was in the A.Br. 003/004 canSNP sub-group. All 52 isolates and both clinical specimens related to the New York and Connecticut cases were MLVA-8 GT 1. The animal products associated with the NY and CT cases were believed to originate from West Africa, but no isolates from this region are available to be genotyped for comparison. All isolates associated with the New Hampshire case were identical and had a new genotype (GT 149). Isolates from the NY, CT and NH cases diverge from the established canSNP phylogeny near the base of the A.Br.011/009. This report illustrates the power of the current genotyping methods and the dramatically different epidemiological conditions that can lead to infections (i.e., contamination by a single genotype versus widespread contamination of numerous genotypes). These cases illustrate the need to acquire and genotype global isolates so that accurate assignments can be made about isolate origins

    The Lantern Vol. 64, No. 2, Spring 1997

    Get PDF
    • Year\u27s End, with Resolutions • Addicted • Muerte, Carlos • Motions • At the Wyeth Gallery • Between Contexts • I\u27m Allowed (and More Nonsense) • Wall and Piece • Timekeeper\u27s Workspace • The Process • Second Sex: A Portrait of the Artist as a Woman • On the Side of the Road • Joe • To Matthew Arnold • A Deep Sleep on Hydrocodone • Madness of a Night • Return • The Sudden Grave • A Farce • Twists of Fur • Ambiguity • The Odor of Continuums • My Father\u27s Daughter • The Meaning of Life • I Aim to Tell • Nobody\u27s Fanhttps://digitalcommons.ursinus.edu/lantern/1150/thumbnail.jp

    Single Nucleotide Polymorphism Typing of Bacillus anthracis from Sverdlovsk Tissue

    Get PDF
    A small number of conserved canonical single nucleotide polymorphisms (canSNP) that define major phylogenetic branches for Bacillus anthracis were used to place a Sverdlovsk patient’s B. anthracis genotype into 1 of 12 subgroups. Reconstruction of the pagA gene also showed a unique SNP that defines a new lineage for B. anthracis

    Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi‑natural grasslands located on four continents

    Get PDF
    The amount of nitrogen (N) derived from symbiotic N2 fixation by legumes in grasslands might be affected by anthropogenic N and phosphorus (P) inputs, but the underlying mechanisms are not known. Methods We evaluated symbiotic N2 fixation in 17 natural and semi-natural grasslands on four continents that are subjected to the same full-factorial N and P addition experiment, using the 15N natural abundance method. Results N as well as combined N and P (NP) addition reduced aboveground legume biomass by 65% and 45%, respectively, compared to the control, whereas P addition had no significant impact. Addition of N and/or P had no significant effect on the symbiotic N2 fixation per unit legume biomass. In consequence, the amount of N fixed annually per grassland area was less than half in the N addition treatments compared to control and P addition, irrespective of whether the dominant legumes were annuals or perennials. Conclusion Our results reveal that N addition mainly impacts symbiotic N2 fixation via reduced biomass of legumes rather than changes in N2 fixation per unit legume biomass. The results show that soil N enrichment by anthropogenic activities significantly reduces N 2 fixation in grasslands, and these effects cannot be reversed by additional P amendment.EEA Santa CruzFil: Vázquez, Eduardo. University of Bayreuth. Department of Soil Ecology. Bayreuth Center of Ecology and Environmental Research (BayCEER); AlemaniaFil: Vázquez, Eduardo. Swedish University of Agricultural Sciences. Department of Soil and Environment; SueciaFil: Schleuss, Per‑Marten. University of Bayreuth. Department of Soil Ecology. Bayreuth Center of Ecology and Environmental Research (BayCEER); AlemaniaFil: Borer, Elizabeth T. University of Minnesota. Department of Ecology, Evolution, and Behavior; Estados UnidosFil: Bugalho, Miguel N. University of Lisbon. Centre for Applied Ecology “Prof. Baeta Neves” (CEABN-InBIO). School of Agriculture; Portugal.Fil: Caldeira, Maria. C. University of Lisbon. Forest Research Centre. School of Agriculture; Portugal.Fil: Eisenhauer, Nico. German Centre for Integrative Biodiversity Research; AlemaniaFil: Eisenhauer, Nico. Leipzig University. Institute of Biology; AlemaniaFil: Eskelinen, Anu. German Centre for Integrative Biodiversity Research; AlemaniaFil: Eskelinen, Anu. Physiological Diversity, Helmholtz Centrefor Environmental Research; AlemaniaFil: Eskelinen, Anu. University of Oulu. Ecology & Genetics; FinlandiaFil: Fay, Philip A. Grassland Soil and Water Research Laboratory (USDA-ARS); Estados UnidosFil: Haider, Sylvia. German Centre for Integrative Biodiversity Research; AlemaniaFil: Haider, Sylvia. Martin Luther University. Institute of Biology. Geobotany and Botanical Garden; AlemaniaFil: Jentsch, Anke. University of Bayreuth. Department of Soil Ecology. Bayreuth Center of Ecology and Environmental Research (BayCEER); AlemaniaFil: Kirkman, Kevin P. University of KwaZulu-Natal. School of Life Sciences; SudáfricaFil: McCulley, Rebecca L. University of Kentucky. Department of Plant and Soil Sciences; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Price, Jodi. Charles Sturt University. Institute for Land, Water and Society; Australia.Fil: Richards, Anna E. CSIRO Land and Water. Northern Territory; Australia.Fil: Risch, Anita C. Swiss Federal Institute for Forest, Snow and Landscape Research WSL; SuizaFil: Roscher, Christiane. German Centre for Integrative Biodiversity Research; AlemaniaFil: Roscher, Christiane. Physiological Diversity, Helmholtz Centre for Environmental Research; AlemaniaFil: Schütz, Martin. Swiss Federal Institute for Forest, Snow and Landscape Research WSL; SuizaFil: Seabloom, Eric William. University of Minnesota. Dept. of Ecology, Evolution, and Behavior; Estados UnidosFil: Standish, Rachel J. Murdoch University. Harry Butler Institute; Australia.Fil: Stevens, Carly J. Lancaster University. Lancaster Environment Centre; Reino UnidoFil: Tedder, Michelle J. University of KwaZulu-Natal. School of Life Sciences; SudáfricaFil: Virtanen, Risto. University of Oulu. Ecology & Genetics; Finlandia.Fil: Spohn, Marie. University of Bayreuth. Department of Soil Ecology. Bayreuth Center of Ecology and Environmental Research (BayCEER); AlemaniaFil: Spohn, Marie. Swedish University of Agricultural Sciences. Department of Soil and Environment; Sueci
    corecore