65 research outputs found

    Second messenger analogues highlight unexpected substrate sensitivity of CD38: total synthesis of the hybrid “L-cyclic inosine 5'-diphosphate ribose”

    Get PDF
    The multifunctional, transmembrane glycoprotein human CD38 catalyses the synthesis of three key Ca2+ - mobilising messengers, including cyclic adenosine 5-diphosphate ribose (cADPR), and CD38 knockout studies have revealed the relevance of the related signalling pathways to disease. To generate inhibitors of CD38 by total synthesis, analogues based on the cyclic inosine 5-diphosphate ribose (cIDPR) template were synthesised. In the first example of a sugar hybrid cIDPR analogue, “L-cIDPR”, the natural “northern” N1-linked D-ribose of cADPR was replaced by L-ribose. L-cIDPR is surprisingly still hydrolysed by CD38, whereas 8-Br-L-cIDPR is not cleaved, even at high enzyme concentrations. Thus, the inhibitory activity of L-cIDPR analogues appears to depend upon substitution of the base at C-8; 8- Br-L-cIDPR and 8-NH2-L-cIDPR inhibit CD38-mediated cADPR hydrolysis (IC50 7 M and 21 µM respectively) with 8-Br-L-cIDPR over 20-fold more potent than 8-Br-cIDPR. In contrast, L-cIDPR displays a comparative 75-fold reduction in activity, but is only ca 2-fold less potent than cIDPR itself. Molecular modelling was used to explore the interaction of the CD38 catalytic residue Glu-226 with the “northern” ribose. We propose that Glu226 still acts as the catalytic residue even for an L-sugar substrate. 8-Br-L-cIDPR potentially binds non-productively in an upside-down fashion. Results highlight the key role of the “northern” ribose in the interaction of cADPR with CD38

    Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes.

    Get PDF
    Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP

    Australasia

    Get PDF
    Observed changes and impacts Ongoing climate trends have exacerbated many extreme events (very high confidence). The Australian trends include further warming and sea level rise sea level rise (SLR), with more hot days and heatwaves, less snow, more rainfall in the north, less April–October rainfall in the southwest and southeast and more extreme fire weather days in the south and east. The New Zealand trends include further warming and sea level rise (SLR), more hot days and heatwaves, less snow, more rainfall in the south, less rainfall in the north and more extreme fire weather in the east. There have been fewer tropical cyclones and cold days in the region. Extreme events include Australia’s hottest and driest year in 2019 with a record-breaking number of days over 39°C, New Zealand’s hottest year in 2016, three widespread marine heatwaves during 2016–2020, Category 4 Cyclone Debbie in 2017, seven major hailstorms over eastern Australia and two over New Zealand from 2014–2020, three major floods in eastern Australia and three over New Zealand during 2019–2021 and major fires in southern and eastern Australia during 2019–2020

    Repetitive Behavior in Rubinstein–Taybi Syndrome:Parallels with Autism Spectrum Phenomenology

    Get PDF
    Syndrome specific repetitive behavior profiles have been described previously. A detailed profile is absent for Rubinstein–Taybi syndrome (RTS). The Repetitive Behaviour Questionnaire and Social Communication Questionnaire were completed for children and adults with RTS (N = 87), Fragile-X (N = 196) and Down (N = 132) syndromes, and individuals reaching cut-off for autism spectrum disorder (N = 228). Total and matched group analyses were conducted. A phenotypic profile of repetitive behavior was found in RTS. The majority of behaviors in RTS were not associated with social-communication deficits or degree of disability. Repetitive behavior should be studied at a fine-grained level. A dissociation of the triad of impairments might be evident in RTS

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    corecore