

Citation for published version: Potter, B, Watt, JM & Baszczynski, O 2019, 'Synthesis of Terminal Ribose Analogues of Adenosine 5-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2', *Journal of Organic* Chemistry, vol. 84, no. 10, pp. 6143-6157. https://doi.org/10.1021/acs.joc.9b00338

DOI: 10.1021/acs.joc.9b00338

Publication date: 2019

Document Version Peer reviewed version

Link to publication

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Organic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.joc.9b00338

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Supplementary Information

Synthesis of terminal ribose analogues of adenosine 5'-diphosphate ribose (ADPR) as probes for the Transient Receptor Potential (TRP) cation channel TRPM2

Ondřej Baszczyňski^{§2}, Joanna M. Watt^{§1,2}, Monika D. Rozewitz³, Andreas H. Guse³, Ralf Fliegert^{3,¶} and Barry V. L. Potter^{1,2,¶}*

¹Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK

²Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, BAth, BA2 7AY, UK

³The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

 $\$ = Equal \text{ contribution}, \P = Equal \text{ contribution}$

Contents:

Supplementary Figure 1: Testing of suitable coupling procedure for pyrophosphate bond formation.	S 2
Supplementary Figure 2: HPLC trace showing decomposition of 2"-deoxy-ADPR 3	S 4
¹ H-NMR, ¹³ C-NMR and ³¹ P-NMR data for compounds 8-12, 14-19, 21-27, and 30	S5-S29
¹ H-NMR, ¹³ C-NMR and ³¹ P-NMR data for final compounds 1-6	S30-S38
HPLC and MS data for final compounds 1-6	S39-S44

<u>Supplementary Figure 1:</u> Testing of suitable coupling procedure for pyrophosphate bond formation.¹ a)

Example of HPLC analysis of the coupling reaction (Peak 4 = product - compound 1)

b) Dabrowski-Tumanski procedure²

Dabrowski-Tumanski procedure²: An example of HPLC analysis of the coupling reaction (Peak 4 =product - compound 1)

Integrity of 2"-deoxy-ADPR after transport and reconstitution was checked by RP-HPLC analysis on a 1260 Infinity system (Agilent Technologies). Samples and standards (ADP, AMP, dAMP, cAMP, Adenosine 250 pmol each) were run on a 250 mm \times 4.6 mm Multohyp C18 5-µm column (Chromatographie Service) with a 4.0 mm \times 3.0 mm guard cartridge containing a C18 ODS filter element (Phenomenex) at a flow rate of 0.8 mL/min with buffer (20 mmol/l KH₂PO₄, pH 6) with a linear gradient of methanol from 0 to 50% Methanol over 22.5 min. Adenine nucleotides were detected at 260 nm. Peaks were integrated using the ChemStation Software (Rev. C.01.05; Agilent Technologies). a) Chromatograms of standards (250 pmol each). b) Chromatogram of a preparation of 2"-deoxy-ADPR after freeze drying, transport and reconstitution in 10 mmol/l HEPES pH7.2. The sample should have contained 1 nmol of 2"-deoxy-ADPR, but eluted from the column as multiple peaks, one of the fragments co-elutes with ADP.

¹H-NMR, ¹³C-NMR and ³¹P-NMR data for compounds 8-12, 14-19, 21-27, and 30

1.00

5.2 5.0

5.6 5.4

<u>1-66.0</u>

4.8

4.6

0.47

4.4 4.2

1.01

4.0

2.03

3.8 3.6

-1500 -1000 ----500 --0

--500

0.6

5.86 1

1.33

1.2 1.0 0.8

-17000 -16000 -15000 -14000 OTr -13000 0]][[[-12000 Ó -11000 ò -10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 -0 0.99-<u>-</u> 1.00-<u>-</u> 년 1.00 1.00 所代 8,5,8,5 8,5,8,1 2.96-≖ 2.99-≖ --1000 5.5 5.0 f1 (ppm) 1.5 7.5 10.0 9.5 9.0 8.5 8.0 7.0 6.5 6.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0

1.10 -28000 -26000 -24000 ∠CH3 -22000 0--OH -20000 -18000 HC ŌН -16000 CH3 ĊН₃ -14000 -12000 -10000 -8000 -6000 -4000 -2000 -0 -2000 0 f1 (ppm) -160 -180 -200 140 120 100 80 60 40 20 -20 -40 -80 -100 -140 200 180 160 -60 -120

f1 (ppm)

-5000 -4000 -3000 -2000 -1000

-0 --1000

5.0 f1 (ppm)

ЧЧЧ 101 101 101 101

4.0

S21

3.5 3.0

4.5

1.00

6.0 5.5

6.5

).5 10.0 9.5

9.0

8.5

8.0

7.5 7.0

-0

--1000

1.02 土 1.16 土 3.04 天 3.02 法

2.0

2.5

1.5

1.0

0.5 0.0

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.0

0.5

-0.5

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

	Peak Name	RT	Area	% Area	Height
1	compound-2	2.966	9281122	97.09	748450
2	baseline bump	4.775	278307	2.91	6239

	Peak Name	RT	Area	% Area	Height
1	2"-deoxyADPR	2.933	7595191	88.97	536539
2	baseline bump	4.700	941594	11.03	15903

1 612.1122 612.110799 -1.40 0.0278 C 19 H 28 N 5 O 14 P 2

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

compound-2 MS

-MS. 1.0-1.3min #(24-30). -Spectral Bkgrnd

Intens. x10 ⁵ 0.8 0.6 0.4		<u> </u>	407.0	163	564.053	2				-MS, 1.0-1.3	8min #(24-30),	-Spectral E	3kgrnd
0.2-	212.	0851						857.5704	961.0527	1151,093	30		
0.0-	200)	400)	60	0	80	0	100	0 1	200	1400	m/z
	#	m/z	I	I %	Area	S/N							
	1	212.0851	4199	7.6	42	1273.9							
	2	292.9828	4115	7.5	172	504.8							
	3	407.0163	49405	89.6	2851	7410.6							
	4	408.0200	6499	11.8	368	982.6							
	5	542.0716	51608	93.6	3540	3320.9							
	6	543.0747	10245	18.6	777	650.1							
	7	564.0532	55139	100.0	3871	2714.5							
	8	564.5546	5698	10.3	467	279.0							
	9	565.0575	10283	18.6	760	500.9							
	10	857.5704	5209	9.4	559	654.1							
Generat	te Molecular	r Formula	Param	neters									
Charge	Tolerance	SearchRa	adius	H/C Rat	io min.	H/C Rati	o max.	Electron	Conf.	Nitrogen Rule	sigma limit		
negative	10 ppm	0.0	5 m/z		0		3		both	true	0.05		

nega	tive 10 pp	om 0.0	15 m/z	U	3	both	true	0.05	
Expected Formula C15 H23 N5 O13 P2					Adduct(s):	H, Na			
#	meas. m/z	theo. m/z	Err[ppm]	Sigma	Formula				
1	542.0716	542.068934	-4.00	0.0066	C 15 H 22 N 5 O 13 P 2				

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

compound-4 MS

-MS, 1.0-1.3min #(24-30), -Spectral Bkgrnd

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

-MS, 1	.0-1.3min	n #(24-30	D), -S	Spectr	al Bkg	Irnd							
Intens. x10 ⁴										-MS, 1.0-1	.3min #(24-30), -	Spectral E	3kgrno
0.6		3	67.265	7									
0.0		•											
0.4				-									
0.2-	-	44.0005		52	26.0768								
001		44.8685			. I	ų u	, <u>+</u> +,	_					
0.0	20	0	4Ó	0	. 6	oo	008		100	0	1200	1400	m/
	#	111/Z	т	T %	Area	S/N							
	1	212 0740	369	66	5	1406 7							
	2	244.8685	471	8.4	16	1214.9							
	3	367.2657	5596	100.0	305	6685.7							
	4	368.2686	1470	26.3	78	1749.1							
	5	526.0768	1777	31.8	107	2795.6							
	б	584.0244	1324	23.7	84	1305.0							
	7	585.0318	379	6.8	26	372.3							
	8	586.0266	592	10.6	38	579.8							
	9	594.0596	495	8.8	25	471.3							
	10	679.9457	374	6.7	32	279.6							
Genera	te Molecula	r Formula	Parar	neters									
Chorgo	Teleropee	SoorahDo	adiuc		atio min		tio mov E	lootr	on Conf	Nitrogon Dulo	ciamo limit		
negative	10 nnm		5 m/z				3 auo max. E	liecu	both	true			
Expecte	ed Formula	C15 H	23 N5	O12 P2	2			A	Adduct(s):	H, Na	. 0.00		
# me	eas.m/z t	heo. m/z	Errís	opm]	Sigma		Form	ula					
1	526.0768 5	26.074019		-4.20	0.0397	C 15 H 2	2 N 5 O 12 F	2					

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

compound-6 MS

Note: Sigma fits < 0.05 indicates high probability of correct MF, and mass accuracy of 5ppm or better is generally acceptable for publication

References:

- (1) Ko, H.; Das, A.; Carter, R. L.; Fricks, I. P.; Zhou, Y.; Ivanov, A. A.; Melman, A.; Joshi, B. V.; Kováč, P.; Hajduch, J.; Kirk, K. L.; Harden, T. K.; Jacobson, K. A. Molecular Recognition in the P2Y14receptor: Probing the Structurally Permissive Terminal Sugar Moiety of Uridine-5'-Diphosphoglucose. *Bioorganic Med. Chem.* **2009**, *17* (14), 5298–5311.
- (2) Dabrowski-Tumanski, P.; Kowalska, J.; Jemielity, J. Efficient and Rapid Synthesis of Nucleoside Diphosphate Sugars from Nucleoside Phosphorimidazolides. *European J. Org. Chem.* **2013**, *2013* (11), 2147–2154.