1,525 research outputs found

    "Do your eyes play tricks on you?” Asking older people about visual hallucinations in a general eye clinic

    Get PDF
    Visual hallucinations are well recognized in individuals with low vision and intact cognition (Charles Bonnet syndrome) (Teunisse et al., 1996). Visual hallucinations also occur in those with early manifestations of dementia with Lewy bodies (McKeith et al., 2005) and Parkinson's disease dementia (Williams and Lees, 2005). Typically, visual hallucinations in these conditions are complex recurrent hallucinations of people and animals and frequently reported as being unpleasant (Mosimann et al., 2006). Individuals with visual hallucinations are often reluctant to disclose details of their symptoms (Menon, 2005), but may instead report non-specific visual difficulties to their family physician or optometrist, resulting in referral to an eye clinic. Failure to elicit the presence of visual hallucinations may lead to inappropriate treatment of age-related ocular comorbidity, such as early catarac

    PSR B0809+74: Understanding Its Perplexing Subpulse-separation (P2) Variations

    Full text link
    The longitude separation between adjacent drifting subpulses, P2P_2, is roughly constant for many pulsars. It was then perplexing when pulsar B0809+74 was found to exhibit substantial variations in this measure, both with wavelength and with longitude position within the pulse window. We analyze these variations between 40 and 1400 MHz, and we show that they stem primarily from the incoherent superposition of the two orthogonal modes of polarization.Comment: Submitted for publication Astronomy and Astrophysic

    Morning vaccination enhances antibody response over afternoon vaccination: A cluster-randomised trial

    Get PDF
    Objectives Older adults are less able to produce a protective antibody response to vaccinations. One factor that contributes to this is immune ageing. Here we examined whether diurnal variations in immune responses might extend to the antibody response to vaccination. Design We utilised a cluster-randomised trial design. Setting 24 General Practices (GPs) across the West Midlands, UK who were assigned to morning (9–11 am; 15 surgeries) or afternoon (3–5 pm; 9 surgeries) vaccination times for the annual UK influenza vaccination programme. Participants 276 adults (aged 65+ years and without a current infection or immune disorder or taking immunosuppressant medication). Interventions Participants were vaccinated in the morning or afternoon between 2011 and 2013. Main outcome measures The primary outcome was the change in antibody titres to the three vaccine influenza strains from pre-vaccination to one month post-vaccination. Secondary outcomes of serum cytokines and steroid hormone concentrations were analysed at baseline to identify relationships with antibody responses. Results The increase in antibody levels due to vaccination differed between morning and afternoon administration; mean difference (95% CI) for H1N1 A-strain, 293.3 (30.97–555.66) p = .03, B-strain, 15.89 (3.42–28.36) p = .01, but not H3N2 A-strain, 47.0 (−52.43 to 146.46) p = .35; those vaccinated in the morning had a greater antibody response. Cytokines and steroid hormones were not related to antibody responses. No adverse events were reported. Conclusions This simple manipulation in the timing of vaccine administration to favour morning vaccination may be beneficial for the influenza antibody response in older adults, with potential implications for vaccination strategies generally

    CARMA CO(J = 2 - 1) Observations of the Circumstellar Envelope of Betelgeuse

    Full text link
    We report radio interferometric observations of the 12C16O 1.3 mm J = 2-1 emission line in the circumstellar envelope of the M supergiant Alpha Ori and have detected and separated both the S1 and S2 flow components for the first time. Observations were made with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) interferometer in the C, D, and E antenna configurations. We obtain good u-v coverage (5-280 klambda) by combining data from all three configurations allowing us to trace spatial scales as small as 0.9\arcsec over a 32\arcsec field of view. The high spectral and spatial resolution C configuration line profile shows that the inner S1 flow has slightly asymmetric outflow velocities ranging from -9.0 km s-1 to +10.6 km s-1 with respect to the stellar rest frame. We find little evidence for the outer S2 flow in this configuration because the majority of this emission has been spatially-filtered (resolved out) by the array. We also report a SOFIA-GREAT CO(J= 12-11) emission line profile which we associate with this inner higher excitation S1 flow. The outer S2 flow appears in the D and E configuration maps and its outflow velocity is found to be in good agreement with high resolution optical spectroscopy of K I obtained at the McDonald Observatory. We image both S1 and S2 in the multi-configuration maps and see a gradual change in the angular size of the emission in the high absolute velocity maps. We assign an outer radius of 4\arcsec to S1 and propose that S2 extends beyond CARMA's field of view (32\arcsec at 1.3 mm) out to a radius of 17\arcsec which is larger than recent single-dish observations have indicated. When azimuthally averaged, the intensity fall-off for both flows is found to be proportional to R^{-1}, where R is the projected radius, indicating optically thin winds with \rho \propto R^{-2}.Comment: 11 pages, 8 figures To be published in the Astronomical Journal (Received 2012 February 10; accepted 2012 May 25

    The Very Low Albedo of WASP-12b From Spectral Eclipse Observations with Hubble\textit{Hubble}

    Get PDF
    We present an optical eclipse observation of the hot Jupiter WASP-12b using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These spectra allow us to place an upper limit of Ag<0.064A_g < 0.064 (97.5% confidence level) on the planet's white light geometric albedo across 290--570 nm. Using six wavelength bins across the same wavelength range also produces stringent limits on the geometric albedo for all bins. However, our uncertainties in eclipse depth are \sim40% greater than the Poisson limit and may be limited by the intrinsic variability of the Sun-like host star --- the solar luminosity is known to vary at the 10410^{-4} level on a timescale of minutes. We use our eclipse depth limits to test two previously suggested atmospheric models for this planet: Mie scattering from an aluminum-oxide haze or cloud-free Rayleigh scattering. Our stringent nondetection rules out both models and is consistent with thermal emission plus weak Rayleigh scattering from atomic hydrogen and helium. Our results are in stark contrast with those for the much cooler HD 189733b, the only other hot Jupiter with spectrally resolved reflected light observations; those data showed an increase in albedo with decreasing wavelength. The fact that the first two exoplanets with optical albedo spectra exhibit significant differences demonstrates the importance of spectrally resolved reflected light observations and highlights the great diversity among hot Jupiters.Comment: 8 pages, 4 figures, 1 table, published in ApJL, in pres

    Pulsar Magnetospheric Emission Mapping: Images and Implications of Polar-Cap Weather

    Get PDF
    The beautiful sequences of ``drifting'' subpulses observed in some radio pulsars have been regarded as among the most salient and potentially instructive characteristics of their emission, not least because they have appeared to represent a system of subbeams in motion within the emission zone of the star. Numerous studies of these ``drift'' sequences have been published, and a model of their generation and motion articulated long ago by Ruderman & Sutherland (1975); but efforts thus far have failed to establish an illuminating connection between the drift phemomenon and the actual sites of radio emission. Through a detailed analysis of a nearly coherent sequence of ``drifting'' pulses from pulsar B0943+10, we have in fact identified a system of subbeams circulating around the magnetic axis of the star. A mapping technique, involving a ``cartographic'' transform and its inverse, permits us to study the character of the polar-cap emission ``map'' and then to confirm that it, in turn, represents the observed pulse sequence. On this basis, we have been able to trace the physical origin of the ``drifting-subpulse'' emission to a stably rotating and remarkably organized configuration of emission columns, in turn traceable possibly to the magnetic polar-cap ``gap'' region envisioned by some theories.Comment: latex with five eps figure
    corecore