30 research outputs found

    New best1 mutations in autosomal recessive bestrophinopathy

    Get PDF
    PURPOSE: To report the ocular phenotype in patients with autosomal recessive bestrophinopathy and carriers, and to describe novel BEST1 mutations. METHODS: Patients with clinically suspected and subsequently genetically proven autosomal recessive bestrophinopathy underwent full ophthalmic examination and investigation with fundus autofluorescence imaging, spectral domain optical coherence tomography, electroretinography, and electrooculography. Mutation analysis of the BEST1 gene was performed through direct Sanger sequencing. RESULTS: Five affected patients from four families were identified. Mean age was 16 years (range, 6-42 years). All affected patients presented with reduced visual acuity and bilateral, hyperautofluorescent subretinal yellowish deposits within the posterior pole. Spectral domain optical coherence tomography demonstrated submacular fluid and subretinal vitelliform material in all patients. A cystoid maculopathy was seen in all but one patient. In 1 patient, the location of the vitelliform material was seen to change over a follow-up period of 3 years despite relatively stable vision. Visual acuity and fundus changes were unresponsive to topical and systemic carbonic anhydrase inhibitors and systemic steroids. Carriers had normal ocular examinations including normal fundus autofluorescence. Three novel mutations were detected. CONCLUSION: Three novel BEST1 mutations are described, suggesting that many deleterious variants in BEST1 resulting in haploinsufficiency are still unknown. Mutations causing autosomal recessive bestrophinopathy are mostly located outside of the exons that usually harbor vitelliform macular dystrophy-associated dominant mutations

    Analysis of candidate genes for macular telangiectasia type 2

    Get PDF
    Purpose: To find the gene(s) responsible for macular telangiectasia type 2 (MacTel) by a candidate-gene screening approach.Methods: Candidate genes were selected based on the following criteria: those known to cause or be associated with diseases with phenotypes similar to MacTel, genes with known function in the retinal vasculature or macular pigment transport, genes that emerged from expression microarray data from mouse models designed to mimic MacTel phenotype characteristics, and genes expressed in the retina that are also related to diabetes or hypertension, which have increased prevalence in MacTel patients. Probands from eight families with at least two affected individuals were screened by direct sequencing of 27 candidate genes. Identified nonsynonymous variants were analyzed to determine whether they cosegregate with the disease in families. Allele frequencies were determined by TaqMan analysis of the large MacTel and control cohorts.Results: We identified 23 nonsynonymous variants in 27 candidate genes in at least one proband. Of these, eight were known single nucleotide polymorphisms (SNPs) with allele frequencies of >0.05; these variants were excluded from further analyses. Three previously unidentified missense variants, three missense variants with reported disease association, and five rare variants were analyzed for segregation and/or allele frequencies. No variant fulfilled the criteria of being causal for MacTel. A missense mutation, p.Pro33Ser in frizzled homolog (Drosophila) 4 (FZD4), previously suggested as a disease-causing variant in familial exudative vitreoretinopathy, was determined to be a rare benign polymorphism.Conclusions: We have ruled out the exons and flanking intronic regions in 27 candidate genes as harboring causal mutations for MacTel

    ATM Gene Variants in Patients with Idiopathic Perifoveal Telangiectasia

    Get PDF
    PURPOSE. To investigate the prevalence of sequence variants in the ATM gene and to determine the frequency of major agerelated macular degeneration (AMD)-associated variants in CFH, CFB, and 10q26 loci in patients with idiopathic perifoveal telangiectasia (IPT). METHODS. Thirty patients with diagnoses of IPT underwent standard ophthalmologic evaluation that included visual acuity testing, fundus photography, and fluorescein angiography. DNA was screened for variations in the ATM gene by a combination of denaturing high-performance liquid chromatography and direct sequencing. Major AMD-associated alleles in CFH, CFB, and 10q loci were screened by PCR-restriction fragment-length polymorphism. RESULTS. Nineteen female and 11 male patients (average age, 59 years) with a median visual acuity of 20/50 were evaluated. Six patients were of Asian-Indian origin, one was Hispanic, and 23 were of European-American ancestry. Nine of 30 (30%) patients had diabetes mellitus, 18 of 30 (60%) patients had hypertension, and 12 of 30 (40%) patients had a history of smoking. Screening of the ATM gene revealed a null allele in 2 of 23 (8.7%) patients of European ancestry, previously disease-associated missense alleles in 4 of 23 (17.4%) patients, and common missense alleles in 7 of 23 (30.4%) patients. No variants were identified in the ATM gene in patients of Asian or Hispanic origin. Frequencies of major AMD-associated alleles in CFH, CFB, and 10q loci in the IPT cohort were similar to those in the ethnically matched general population. CONCLUSIONS. At least 26%, and maybe up to 57%, of IPT patients of European-American descent carried possibly diseaseassociated ATM alleles. Vascular risk factors such as hypertension, diabetes, and smoking may be associated with the pathogenesis of the disease. (Invest Ophthalmol Vis Sci. 2008; 49:3806 -3811

    Comprehensive Analysis of the Candidate Genes CCL2, CCR2, and TLR4 in Age-Related Macular Degeneration

    Get PDF
    PURPOSE. To determine whether variants in the candidate genes TLR4, CCL2, and CCR2 are associated with age-related macular degeneration (AMD). METHODS. This study was performed in two independent Caucasian populations that included 357 cases and 173 controls from the Netherlands and 368 cases and 368 controls from the United States. Exon 4 of the TLR4 gene and the promoter, all exons, and flanking intronic regions of the CCL2 and CCR2 genes were analyzed in the Dutch study and common variants were validated in the U.S. study. Quantitative (q)PCR reactions were performed to evaluate expression of these genes in laserdissected retinal pigment epithelium from 13 donor AMD and 13 control eyes. RESULTS. Analysis of single nucleotide polymorphisms (SNPs) in the TLR4 gene did not show a significant association between D299G or T399I and AMD, nor did haplotypes containing these variants. Univariate analyses of the SNPs in CCL2 and CCR2 did not demonstrate an association with AMD. For CCR2, haplotype frequencies were not significantly different between cases and controls. For CCL2, one haplotype containing the minor allele of C35C was significantly associated with AMD (P ϭ 0.03), but this did not sustain after adjustment for multiple testing (q ϭ 0.30). Expression analysis did not demonstrate altered RNA expression of CCL2 and CCR2 in the retinal pigment epithelium from AMD eyes (for CCL2 P ϭ 0.62; for CCR2 P ϭ 0.97). CONCLUSIONS. No evidence was found of an association between TLR4, CCR2, and CCL2 and AMD, which implies that the common genetic variation in these genes does not play a significant role in the etiology of AMD. (Invest Ophthalmol Vis Sci

    A Candidate Gene Association Study Identifies DAPL1 as a Female-Specific Susceptibility Locus for Age-Related Macular Degeneration (AMD)

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of blindness among white caucasians over the age of 50 years with a prevalence rate expected to increase markedly with an anticipated increase in the life span of the world population. To further expand our knowledge of the genetic architecture of the disease, we pursued a candidate gene approach assessing 25 genes and a total of 109 variants. Of these, synonymous single nucleotide polymorphism (SNP) rs17810398 located in death-associated protein-like 1 (DAPL1) was found to be associated with AMD in a joint analysis of 3,229 cases and 2,835 controls from five studies [combined PADJ = 1.15 × 10−6, OR 1.332 (1.187–1.496)]. This association was characterized by a highly significant sex difference (Pdiff = 0.0032) in that it was clearly confined to females with genome-wide significance [PADJ = 2.62 × 10−8, OR 1.541 (1.324–1.796); males: PADJ = 0.382, OR 1.084 (0.905–1.298)]. By targeted resequencing of risk and non-risk associated haplotypes in the DAPL1 locus, we identified additional potentially functional risk variants, namely a common 897-bp deletion and a SNP predicted to affect a putative binding site of an exonic splicing enhancer. We show that the risk haplotype correlates with a reduced retinal transcript level of two, less frequent, non-canonical DAPL1 isoforms. DAPL1 plays a role in epithelial differentiation and may be involved in apoptotic processes thereby suggesting a possible novel pathway in AMD pathogenesis

    The ERCC6 Gene and Age-Related Macular Degeneration

    Get PDF
    Background: Age-related macular degeneration (AMD) is the leading cause of irreversible visual loss in the developed countries and is caused by both environmental and genetic factors. A recent study (Tuo et al., PNAS) reported an association between AMD and a single nucleotide polymorphism (SNP) (rs3793784) in the ERCC6 (NM_000124) gene. The risk allele also increased ERCC6 expression. ERCC6 is involved in DNA repair and mutations in ERCC6 cause Cockayne syndrome (CS). Amongst others, photosensitivity and pigmentary retinopathy are hallmarks of CS. Methodology/Principal Findings: Separate and combined data from three large AMD case-control studies and a prospective population-based study (The Rotterdam Study) were used to analyse the genetic association between ERCC6 and AMD (2682 AMD cases and 3152 controls). We also measured ERCC6 mRNA levels in retinal pigment epithelium (RPE) cells of healthy and early AMD affected human donor eyes. Rs3793784 conferred a small increase in risk for late AMD in the Dutch population (The Rotterdam and AMRO-NL study), but this was not replicated in two non-European studies (AREDS, Columbia University). In addition, the AMRO-NL study revealed no significant association for 9 other variants spanning ERCC6. Finally, we determined that ERCC6 expression in the human RPE did not depend on rs3793784 genotype, but, interestingly, on AMD status: Early AMD-affected donor eyes had a 50% lower ERCC6 expression than healthy donor eyes (P = 0.018). Conclusions/Significance: Our meta analysis of four Caucasian cohorts does not replicate the reported association between SNPs in ERCC6 and AMD. Nevertheless, our findings on ERCC6 expression in the RPE suggest that ERCC6 may be functionally involved in AMD. Combining our data with those of the literature, we hypothesize that the AMD-related reduced transcriptional activity of ERCC6 may be caused by diverse, small and heterogeneous genetic and/or environmental determinants

    Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration

    Get PDF
    Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10−8] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10−9). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Set shifting deficit in anorexia nervosa

    No full text
    Anorexia nervosa (AN) is a severe mental illness characterized in part by rigid thinking and ritualized behaviors involving eating and weight. Cognitive rigidity may play a role in the perpetuation of symptoms, and may provide information as to important brain-based abnormalities. Neuropsychological studies of patients with AN have shown cognitive dysfunction, but few have focused on cognitive flexibility. This study assessed set shifting in patients with AN, as a measure of cognitive flexibility. In this study, 15 patients with AN were compared with 11 healthy controls using a neuropsychological battery including the Wisconsin Card Sort Test (WCST). While patients with AN did not differ from controls on 5 measures of neuropsychological function, they made significantly more perseverative errors on the WCST, indicating a problem in set shifting. This finding suggests that patients with AN have a specific neurocognitive abnormality that may play a role in the development and persistence of this disorder
    corecore