19 research outputs found

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Release of angiotensin converting enzyme by the lung after Pseudomonas bacteremia in sheep.

    No full text
    We studied release of angiotensin-converting enzyme (ACE) by the lung after acute injury associated with an increase in pulmonary vascular permeability. In eight adult sheep with chronic lung lymph fistulas, we measured lymph flow (QL), and both ACE activity and total protein content in lymph and plasma under base-line conditions and during 24 h after an infusion of live pseudomonas organism. Under base-line conditions, ACE activity in plasma was 4.93 +/- 0.43 U/ml (mean +/- SEM). The [lymph]/[plasma] ([L]/[P]) ratio for ACE was 0.93 +/- 0.18, compared with a ratio of 0.79 +/- 0.08 for albumin (mean +/- SD). We estimated the molecular weight of ovine ACE to be 145,000 by gel chromatography. Predicted [L]/[P] ratio for a molecule this size is 0.51. Thus, a substantial fraction of ACE activity detected lung lymph under base-line conditions (11.1 +/- 6.2 U/h; mean +/- SD) originated in the lung, and did not diffuse passively from plasma. After pseudomonas infusion, endothelial injury was demonstrated by a rise in pulmonary vascular clearance for total protein (Crp = QL X [L]/[P]). Crp = 3.1 +/- 0.6 ml/h before pseudomonas bacteremia, and rose to 6.7 +/- 1.2 ml/h by 2 h after onset of the infusion (means +/- SEM, p less than 0.05). Crp remained significantly elevated for at least 10 h after the infusion. Release of ACE into lung lymph doubled after acute lung injury and equaled 22.3 +/- 13.8 U/h at 4 h after onset of the infusion. ACE secretion into lung lymph had returned to baseline levels by 24 h after bacteremia. We did not observe a significant rise in plasma ACE activity after acute lung injury. Pseudomonas bacteremia in sheep results in acute, reversible lung injury associated with increased pulmonary vascular permeability, and increased release of ACE by the lung. Failure to detect a rise in plasma ACE content might result from dilution in the large vascular pool or rapid catabolism of the enzyme at some site distant from the lung

    Design of Development Candidate eFT226, a First in Class Inhibitor of Eukaryotic Initiation Factor 4A RNA Helicase.

    No full text
    Dysregulation of protein translation is a key driver for the pathogenesis of many cancers. Eukaryotic initiation factor 4A (eIF4A), an ATP-dependent DEAD-box RNA helicase, is a critical component of the eIF4F complex, which regulates cap-dependent protein synthesis. The flavagline class of natural products (i.e., rocaglamide A) has been shown to inhibit protein synthesis by stabilizing a translation-incompetent complex for select messenger RNAs (mRNAs) with eIF4A. Despite showing promising anticancer phenotypes, the development of flavagline derivatives as therapeutic agents has been hampered because of poor drug-like properties as well as synthetic complexity. A focused effort was undertaken utilizing a ligand-based design strategy to identify a chemotype with optimized physicochemical properties. Also, detailed mechanistic studies were undertaken to further elucidate mRNA sequence selectivity, key regulated target genes, and the associated antitumor phenotype. This work led to the design of eFT226 (Zotatifin), a compound with excellent physicochemical properties and significant antitumor activity that supports clinical development

    Structure-based Design of Pyridone–Aminal eFT508 Targeting Dysregulated Translation by Selective Mitogen-activated Protein Kinase Interacting Kinases 1 and 2 (MNK1/2) Inhibition

    No full text
    Dysregulated translation of mRNA plays a major role in tumorigenesis. Mitogen-activated protein kinase interacting kinases (MNK)­1/2 are key regulators of mRNA translation integrating signals from oncogenic and immune signaling pathways through phosphorylation of eIF4E and other mRNA binding proteins. Modulation of these key effector proteins regulates mRNA, which controls tumor/stromal cell signaling. Compound <b>23</b> (eFT508), an exquisitely selective, potent dual MNK1/2 inhibitor, was designed to assess the potential for control of oncogene signaling at the level of mRNA translation. The crystal structure-guided design leverages stereoelectronic interactions unique to MNK culminating in a novel pyridone–aminal structure described for the first time in the kinase literature. Compound <b>23</b> has potent <i>in vivo</i> antitumor activity in models of diffuse large cell B-cell lymphoma and solid tumors, suggesting that controlling dysregulated translation has real therapeutic potential. Compound <b>23</b> is currently being evaluated in Phase 2 clinical trials in solid tumors and lymphoma. Compound <b>23</b> is the first highly selective dual MNK inhibitor targeting dysregulated translation being assessed clinically
    corecore