10 research outputs found

    Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial

    Get PDF
    Introduction: Experimental research has demonstrated that the level of neuroprotection conferred by the various barbiturates is not equal. Until now no controlled studies have been conducted to compare their effectiveness, even though the Brain Trauma Foundation Guidelines recommend that such studies be undertaken. The objectives of the present study were to assess the effectiveness of pentobarbital and thiopental in terms of controlling refractory intracranial hypertension in patients with severe traumatic brain injury, and to evaluate the adverse effects of treatment. Methods: This was a prospective, randomized, cohort study comparing two treatments: pentobarbital and thiopental. Patients who had suffered a severe traumatic brain injury (Glasgow Coma Scale score after resuscitation ≤ 8 points or neurological deterioration during the first week after trauma) and with refractory intracranial hypertension (intracranial pressure > 20 mmHg) first-tier measures, in accordance with the Brain Trauma Foundation Guidelines. Results: A total of 44 patients (22 in each group) were included over a 5-year period. There were no statistically significant differences in ' baseline characteristics, except for admission computed cranial tomography characteristics, using the Traumatic Coma Data Bank classification. Uncontrollable intracranial pressure occurred in 11 patients (50%) in the thiopental treatment group and in 18 patients (82%) in the pentobarbital group (P = 0.03). Under logistic regression analysis - undertaken in an effort to adjust for the cranial tomography characteristics, which were unfavourable for pentobarbital - thiopental was more effective than pentobarbital in terms of controlling intracranial pressure (odds ratio = 5.1, 95% confidence interval 1.2 to 21.9; P = 0.027). There were no significant differences between the two groups with respect to the incidence of arterial hypotension or infection. Conclusions: Thiopental appeared to be more effective than pentobarbital in controlling intracranial hypertension refractory to first-tier measures. These findings should be interpreted with caution because of the imbalance in cranial tomography characteristics and the different dosages employed in the two arms of the study. The incidence of adverse effects was similar in both groups

    Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury : a randomized controlled trial

    No full text
    Introduction: Experimental research has demonstrated that the level of neuroprotection conferred by the various barbiturates is not equal. Until now no controlled studies have been conducted to compare their effectiveness, even though the Brain Trauma Foundation Guidelines recommend that such studies be undertaken. The objectives of the present study were to assess the effectiveness of pentobarbital and thiopental in terms of controlling refractory intracranial hypertension in patients with severe traumatic brain injury, and to evaluate the adverse effects of treatment. Methods: This was a prospective, randomized, cohort study comparing two treatments: pentobarbital and thiopental. Patients who had suffered a severe traumatic brain injury (Glasgow Coma Scale score after resuscitation ≤ 8 points or neurological deterioration during the first week after trauma) and with refractory intracranial hypertension (intracranial pressure > 20 mmHg) first-tier measures, in accordance with the Brain Trauma Foundation Guidelines. Results: A total of 44 patients (22 in each group) were included over a 5-year period. There were no statistically significant differences in ' baseline characteristics, except for admission computed cranial tomography characteristics, using the Traumatic Coma Data Bank classification. Uncontrollable intracranial pressure occurred in 11 patients (50%) in the thiopental treatment group and in 18 patients (82%) in the pentobarbital group (P = 0.03). Under logistic regression analysis - undertaken in an effort to adjust for the cranial tomography characteristics, which were unfavourable for pentobarbital - thiopental was more effective than pentobarbital in terms of controlling intracranial pressure (odds ratio = 5.1, 95% confidence interval 1.2 to 21.9; P = 0.027). There were no significant differences between the two groups with respect to the incidence of arterial hypotension or infection. Conclusions: Thiopental appeared to be more effective than pentobarbital in controlling intracranial hypertension refractory to first-tier measures. These findings should be interpreted with caution because of the imbalance in cranial tomography characteristics and the different dosages employed in the two arms of the study. The incidence of adverse effects was similar in both groups

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore