24 research outputs found

    The effect of nanosilica (SiO2) and nanoalumina (Al2O3) reinforced polyester nanocomposites on aerosol nanoparticle emissions into the environment during automated drilling

    Get PDF
    The aim of this study is to investigate the effect nanosilica and nanoalumina has on nanoparticle release from industrial nanocomposites due to drilling for hazard reduction whilst simultaneously obtaining the necessary mechanical performance. This study is therefore specifically designed such that all background noise is eliminated in the measurements range of 0.01 particles/cm3 and ±10% at 106 particles/cm3. The impact nano-sized SiO2 and Al2O3 reinforced polyester has on nanoparticle aerosols generated due to drilling is investigated. Real-time measurement was conducted within a specially designed controlled test chamber using a condensation particle counter (CPC) and a scanning mobility particle sizer spectrometer (SMPS). The results show that the polyester nanocomposite samples displayed statistically significant differences and an increase in nanoparticle number concentration by up to 228% compared to virgin polyester. It is shown that the nanofillers adhered to the polyester matrix showing a higher concentration of larger particles released (between 20 – 100 nm). The increase in nanoparticle reinforcement weight concentration and resulting nanoparticle release vary considerably between the nanosilica and nanoalumina samples due to the nanofillers presence. This study indicates a future opportunity to safer by design strategy that reduces number of particles released concentration and sizes without compromising desired mechanical properties for engineered polymers and composites.European Commission Life+ project named “Simulation of the release of nanomaterials from consumer products for environmental exposure assessment” (SIRENA, Pr. No. LIFE 11 ENV/ES/596). QualityNano Project through Transnational Access (TA Application VITO-TAF-382 and VITO-TAF-500) under the European Commission, Grant Agreement No: INFRA-2010-26216

    Assessment of nanoparticles release into the environment during drilling of carbon nanotubes/epoxy and carbon nanofibres/epoxy nanocomposites

    Get PDF
    The risk assessment, exposure and understanding of the release of embedded carbon nanotubes (CNTs) and carbon nanofibers (CNFs) from commercial high performance composites during machining processes are yet to be fully evaluated and quantified. In this study, CNTs and CNFs were dispersed in epoxy matrix through calendaring process to form nanocomposites. The automated drilling was carried out in a specially designed drilling chamber that allowed elimination of background noise from the measurements. Emission measurements were taken using condensed particle counter (CPC), scanning mobility particle sizer (SMPS) and DMS50 Fast Particulate Size Spectrometer. In comparison to the neat epoxy, the study results revealed that the nano-filled samples produced an increase of 102% and 227% for the EP/CNF and EP/CNT sample respectively in average particle number concentration emission. The particle mass concentration indicated that the EP/CNT and EP/CNF samples released demands a vital new perspective on CNTs and CNFs embedded within nanocomposite materials to be considered and evaluated for occupational exposure assessment. Importantly, the increased concentration observed at 10 nm aerosol particle sizes measurements strongly suggest that there are independent CNTs being released at this range.The work is funded by and part of the European Commission Life project named Simulation of the release of nanomaterials from consumer products for environmental exposure assessment (SIRENA, Pr. No. LIFE 11 ENV/ES/596). We are also thankful to the funding by QualityNano Project through Transnational Access (TA Application VITO-TAF-382 and VITO-TAF-500) under the European Commission, Grant Agreement No: INFRA-2010-262163 for the access and use of the facilities at the Flemish Institute for Technological Research (VITO). The authors would like to acknowledge K. Tirez and R. Persoons at Vito for their XRF and SEM support. Kristof Starost is also thankful for partial funding by the School of Engineering for his studentship

    The haptoglobin phenotype influences the risk of cutaneous squamous cell carcinoma in kidney transplant patients

    No full text
    Background : Cutaneous squamous cell carcinoma (SCC) is the most frequent skin cancer after organ transplantation. Currently, the pre-identification of transplant patients at increased risk for non-melanoma skin cancer remains difficult. Objective : To investigate the Hp polymorphism as a marker for the identification of a subset of patients with an increased susceptibility to develop SCC/Bowen's disease. Methods : Haptoglobin phenotyping was performed with haemoglobin-supplemented starch gel electrophoresis in 300 kidney transplant patients. High-performance gel permeation chromatography was used in case of low serum haptoglobin concentration. Results : Cox regression analysis (adjusted for age, gender and Mediterranean origin) showed a significant association of the Hp 1-1 phenotype with a higher risk of SCC/Bowen's disease (P = 0.035) and multiple primary SCCs (P = 0.002). No significant difference between the Hp phenotypes was found for the development of Bowen's disease and SCCs in the first 10 years following renal transplantation. However, after a follow-up of >10 years, a significant association between the Hp 1-1 phenotype and the occurrence of Bowen's disease and SCC was reported (P = 0.002 and P = 0.001 respectively). Conclusions : This study shows an increased risk for the development of (multiple) SCCs in kidney transplant patients with the Hp 1-1 phenotype. This finding points to the role of Hp 1-1 phenotype as an important predictor in identifying a subset of patients with an increased need for preventive measures and is in agreement with the decreased anti-inflammatory capacity of this phenotype

    Air Quality Sensor Networks for Evidence-Based Policy Making: Best Practices for Actionable Insights

    No full text
    (1) Background: This work evaluated the usability of commercial “low-cost” air quality sensor systems to substantiate evidence-based policy making. (2) Methods: Two commercially available sensor systems (Airly, Kunak) were benchmarked at a regulatory air quality monitoring station (AQMS) and subsequently deployed in Kampenhout and Sint-Niklaas (Belgium) to address real-world policy concerns: (a) what is the pollution contribution from road traffic near a school and at a central city square and (b) do local traffic interventions result in quantifiable air quality impacts? (3) Results: The considered sensor systems performed well in terms of data capture, correlation and intra-sensor uncertainty. Their accuracy was improved via local re-calibration, up to data quality levels for indicative measurements as set in the Air Quality Directive (Uexp < 50% for PM and <25% for NO2). A methodological setup was proposed using local background and source locations, allowing for quantification of the (3.1) maximum potential impact of local policy interventions and (3.2) air quality impacts from different traffic interventions with local contribution reductions of up to 89% for NO2 and 60% for NO throughout the considered 3 month monitoring period; (4) Conclusions: Our results indicate that commercial air quality sensor systems are able to accurately quantify air quality impacts from (even short-lived) local traffic measures and contribute to evidence-based policy making under the condition of a proper methodological setup (background normalization) and data quality (recurrent calibration) procedure. The applied methodology and learnings were distilled in a blueprint for air quality sensor networks for replication actions in other cities

    Air Quality Sensor Networks for Evidence-Based Policy Making: Best Practices for Actionable Insights

    No full text
    (1) Background: This work evaluated the usability of commercial “low-cost” air quality sensor systems to substantiate evidence-based policy making. (2) Methods: Two commercially available sensor systems (Airly, Kunak) were benchmarked at a regulatory air quality monitoring station (AQMS) and subsequently deployed in Kampenhout and Sint-Niklaas (Belgium) to address real-world policy concerns: (a) what is the pollution contribution from road traffic near a school and at a central city square and (b) do local traffic interventions result in quantifiable air quality impacts? (3) Results: The considered sensor systems performed well in terms of data capture, correlation and intra-sensor uncertainty. Their accuracy was improved via local re-calibration, up to data quality levels for indicative measurements as set in the Air Quality Directive (Uexp 2). A methodological setup was proposed using local background and source locations, allowing for quantification of the (3.1) maximum potential impact of local policy interventions and (3.2) air quality impacts from different traffic interventions with local contribution reductions of up to 89% for NO2 and 60% for NO throughout the considered 3 month monitoring period; (4) Conclusions: Our results indicate that commercial air quality sensor systems are able to accurately quantify air quality impacts from (even short-lived) local traffic measures and contribute to evidence-based policy making under the condition of a proper methodological setup (background normalization) and data quality (recurrent calibration) procedure. The applied methodology and learnings were distilled in a blueprint for air quality sensor networks for replication actions in other cities

    Environmental Science and Technology / A Novel Exposure System Termed NAVETTA for In Vitro Laminar Flow Electrodeposition of Nanoaerosol and Evaluation of Immune Effects in Human Lung Reporter Cells

    No full text
    A new prototype airliquid interface (ALI) exposure system, a flatbed aerosol exposure chamber termed NAVETTA, was developed to investigate deposition of engineered nanoparticles (NPs) on cultured human lung A549 cells directly from the gas phase. This device mimics human lung cell exposure to NPs due to a low horizontal gas flow combined with cells exposed at the ALI. Electrostatic field assistance is applied to improve NP deposition efficiency. As proof-of-principle, cell viability and immune responses after short-term exposure to nanocopper oxide (CuO)-aerosol were determined. We found that, due to the laminar aerosol flow and a specific orientation of inverted transwells, much higher deposition rates were obtained compared to the normal ALI setup. Cellular responses were monitored with postexposure incubation in submerged conditions, revealing CuO dissolution in a concentration-dependent manner. Cytotoxicity was the result of ionic and nonionic Cu fractions. Using the optimized inverted ALI/postincubation procedure, pro-inflammatory immune responses, in terms of interleukin (IL)-8 promoter and nuclear factor kappa B (NFB) activity, were observed within short time, i.e. One hour exposure to ALI-deposited CuO-NPs and 2.5 h postincubation. NAVETTA is a novel option for mimicking human lung cell exposure to NPs, complementing existing ALI systems.(VLID)355062
    corecore