96 research outputs found

    «O que é, bebé?», ou o que a Mãe diz ao Recém-nascido no Contacto Precoce

    Get PDF
    Com o presente estudo, que se insere numa investigação mais lata sobre padrões de comunicação precoce mãe-criança, pretende-se descrever algumas das características da linguagem verbal que as mães dirigem aos seus filhos, durante o contacto-precoce e da forma como o bebé real é, nesse momento, percepcionado e investido pela mãe. Para tal realizou-se o registo auditivo do contacto precoce de 30 pares de mães-bebés. Posteriormente analisou-se o discurso materno que foi classificado em diversas categorias relacionadas com aspectos da estrutura sintáctica e com análise de conteúdo. Constatou-se que as mães recorrem pouco a expressao verbal, no primeiro contacto com os seus filhos. Quando o fazem utilizam uma linguagem que tem características da «fala de bebé)) e é constituída, sobretudo, por interjeições, exclamações, frases com duas a três palavras e palavras isoladas. O discurso emitido centra-se em torno da realidade vivida no momento. O bebé que a mãe descreve é um ser pequenino e frágil, que chora e tem fome, pouco individualizado e pouco «humano», a quem atribui essencialmente, necessidades fisiológicas.In the present study, part of a broader research on mother-child early communication patterns, we describe some of the verbal language characteristics of mothers speaking to their children in early interactions, and we discuss the way in wich the real baby is, at that stage, perceived and elaborated by the mother. The early contacts of 30 pairs mother-child were recorded. The speech of these mothers was classified in severa1 categories according to syntax structure and also through content analysis. ment. In these initial contacts, mothers don’t use much verbal language. When they do, they use «baby talk» expressions and emit mostly exclamations and interjections, two or three-word sentences and isolated words. The speech is centered in the reality of the mo- The baby described by the mother is a small and fragile being, who cries and feels hunger, not very individualized and not very «human», and in whom she recognizes, essentially, psysiological needs.info:eu-repo/semantics/publishedVersio

    Balance between the two kinin receptors in the progression of experimental focal and segmental glomerulosclerosis in mice

    Get PDF
    Focal and segmental glomerulosclerosis (FSGS) is one of the most important renal diseases related to end-stage renal failure. Bradykinin has been implicated in the pathogenesis of renal inflammation, whereas the role of its receptor 2 (B2RBK; also known as BDKRB2) in FSGS has not been studied. FSGS was induced in wild-type and B2RBK-knockout mice by a single intravenous injection of Adriamycin (ADM). in order to further modulate the kinin receptors, the animals were also treated with the B2RBK antagonist HOE-140 and the B1RBK antagonist DALBK. Here, we show that the blockage of B2RBK with HOE-140 protects mice from the development of FSGS, including podocyte foot process effacement and the re-establishment of slit-diaphragm-related proteins. However, B2RBK-knockout mice were not protected from FSGS. These opposite results were due to B1RBK expression. B1RBK was upregulated after the injection of ADM and this upregulation was exacerbated in B2RBK-knockout animals. Furthermore, treatment with HOE-140 downregulated the B1RBK receptor. the blockage of B1RBK in B2RBK-knockout animals promoted FSGS regression, with a less-inflammatory phenotype. These results indicate a deleterious role of both kinin receptors in an FSGS model and suggest a possible cross-talk between them in the progression of disease.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo, Clin & Expt Immunol Lab, Div Nephrol, BR-04023900 São Paulo, BrazilUniv São Paulo, Inst Biomed Sci 4, Dept Immunol, Lab Transplantat Immunobiol, BR-05508000 São Paulo, BrazilUniversidade Federal de São Paulo, Translat Med Div, Clin & Expt Immunol Lab, BR-04039002 São Paulo, BrazilInst Butantan, Lab Cellular Biol, BR-05503900 São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Biophys, BR-04023062 São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilINSERM, Unite Mixte Rech 699, F-75870 Paris, FranceAlbert Einstein Hosp, Inst Israelita Ensino & Pesquisa Albert Einst, Renal Transplantat Unit, BR-05521000 São Paulo, BrazilUniversidade Federal de São Paulo, Clin & Expt Immunol Lab, Div Nephrol, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Translat Med Div, Clin & Expt Immunol Lab, BR-04039002 São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Biophys, BR-04023062 São Paulo, BrazilFed Univ São Paulo UNIFESP, Dept Microbiol Immunol & Parasitol, BR-04023062 São Paulo, BrazilFAPESP: 2012/05605-5FAPESP: 07/07139-3FAPESP: 12/02270-2CNPq: 140739/2008-4Web of Scienc

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a Ciência e Tecnologia and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio
    corecore