11 research outputs found

    miR-146a-5p inhibits proliferation and invasion of prostate cancer cell line PC-3 by targeting SMAD4

    No full text
    Objective To explore the inhibition effect and mechanism of miR-146a-5p on proliferation and invasion of prostate cancer (PCa) cell line PC-3 by targeting SMAD4. Methods RT-qPCR was used to detect the expression of miR-146a-5p in PCa tissues and cell lines. The relevance of miR-146a-5p expression with Gleason score was also analyzed. MTT, BrdU experiment, cell colony formation experiment, scratch experiment, Transwell assay and nude mouse xenograft model experiment were conducted to detect the effect of miR-146a-5p on cell proliferation, tumorigenicity, migration and invasion. The expression of SMAD4 in PCa tissues was detected by RT-qPCR, and the targeting relationship of SMAD4 and miR-146a-5p was confirmed by double luciferase reporter gene assay and rescue experiment. Western blot was used to detect the expression of SMAD2/SMAD3 complex in nucleus affected by miR-146a-5p and SMAD4. Finally, double luciferase reporter gene assay and ChIP experiment were performed to examine the targeting regulation of TIM3 by miR-146a-5p/SMAD4/SMAD2/SMAD3 signaling axis. Results miR-146a-5p was low expressed in PCa tissues and cell lines; its expression was negatively correlated to Gleason score and had the lowest expression in PC-3 cells. miR-146a-5p inhibited the proliferation and invasion of PC-3 cells by targeting SMAD4. SMAD2/SMAD3/TIM3 axis seemed to be the downstream mechanism of miR-146a-5p/SMAD4 signaling pathway. Conclusions miR-146a-5p can inhibit the proliferation and invasion of PC-3 cells by targeting SMAD4, and the downstream mechanism might be related to the SMAD2/SMAD3/TIM3 signaling pathway

    Correlation Between Wnt5a Expression and Vasculogenic Mimicry in Prostate Cancer Tissues

    No full text
    Objective To investigate the correlation of Wnt5a expression and vasculogenic mimicry (VM) in prostate cancer tissues, and analyze their relationships with cancer stem cells (CSCs) characteristics and epithelial–mesenchymal transition (EMT). Methods Immunohistochemistry was conducted to detect the expression of Wnt5a in 50 prostate cancer tissues and 50 benign prostatic hyperplasia tissues. The expression levels of CD133, vimentin, and E-cadherin were detected in the prostate cancer tissues, and CD34/PAS double staining was used to detect VM structures. We analyzed the difference in Wnt5a level between prostate cancer and benign prostatic hyperplasia tissues, the clinical significance of Wnt5a and VM, the relationship of Wnt5a expression and VM, and the relationships of Wnt5a expression and VM with CD133, Vimentin, E-cadherin. Results The expression of Wnt5a was significantly higher in prostate cancer tissues than in benign prostatic hyperplasia (P < 0.05). A positive correlation was observed between Wnt5a expression and VM (P < 0.05). The expression levels of Wnt5a and VM were positively correlated with those of CD133 and vimentin (P < 0.05). Wnt5a expression and VM were positively correlated with Gleason score, vas deferens invasion and lymphatic metastasis (P < 0.05) of prostate cancer, and VM was also positively correlated with T stage of prostate cancer (P < 0.05). Conclusion The expression level of Wnt5a in prostate cancer tissues is elevated and positively related with VM formation. Wnt5a expression and VM are correlated with cancer stem cells characteristics and the expression of epithelial–mesenchymal transition marker proteins

    29.1: Unified Study of Twisted Nematic Reflective Modes for LCoS

    No full text

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background: Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods: WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings: Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0-4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2-6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation: In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates. Funding: European Society of Intensive Care Medicine, European Respiratory Society

    Weaning from mechanical ventilation in intensive care units across 50 countries (WEAN SAFE): a multicentre, prospective, observational cohort study

    No full text
    Background Current management practices and outcomes in weaning from invasive mechanical ventilation are poorly understood. We aimed to describe the epidemiology, management, timings, risk for failure, and outcomes of weaning in patients requiring at least 2 days of invasive mechanical ventilation. Methods WEAN SAFE was an international, multicentre, prospective, observational cohort study done in 481 intensive care units in 50 countries. Eligible participants were older than 16 years, admitted to a participating intensive care unit, and receiving mechanical ventilation for 2 calendar days or longer. We defined weaning initiation as the first attempt to separate a patient from the ventilator, successful weaning as no reintubation or death within 7 days of extubation, and weaning eligibility criteria based on positive end-expiratory pressure, fractional concentration of oxygen in inspired air, and vasopressors. The primary outcome was the proportion of patients successfully weaned at 90 days. Key secondary outcomes included weaning duration, timing of weaning events, factors associated with weaning delay and weaning failure, and hospital outcomes. This study is registered with ClinicalTrials.gov, NCT03255109. Findings Between Oct 4, 2017, and June 25, 2018, 10 232 patients were screened for eligibility, of whom 5869 were enrolled. 4523 (77·1%) patients underwent at least one separation attempt and 3817 (65·0%) patients were successfully weaned from ventilation at day 90. 237 (4·0%) patients were transferred before any separation attempt, 153 (2·6%) were transferred after at least one separation attempt and not successfully weaned, and 1662 (28·3%) died while invasively ventilated. The median time from fulfilling weaning eligibility criteria to first separation attempt was 1 day (IQR 0–4), and 1013 (22·4%) patients had a delay in initiating first separation of 5 or more days. Of the 4523 (77·1%) patients with separation attempts, 2927 (64·7%) had a short wean (≤1 day), 457 (10·1%) had intermediate weaning (2–6 days), 433 (9·6%) required prolonged weaning (≥7 days), and 706 (15·6%) had weaning failure. Higher sedation scores were independently associated with delayed initiation of weaning. Delayed initiation of weaning and higher sedation scores were independently associated with weaning failure. 1742 (31·8%) of 5479 patients died in the intensive care unit and 2095 (38·3%) of 5465 patients died in hospital. Interpretation In critically ill patients receiving at least 2 days of invasive mechanical ventilation, only 65% were weaned at 90 days. A better understanding of factors that delay the weaning process, such as delays in weaning initiation or excessive sedation levels, might improve weaning success rates

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p &lt; 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p &lt; 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p &lt; 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore