11 research outputs found
PCA-SVM based CAD System for Focal Liver Lesions using B-Mode Ultrasound Images
The contribution made by texture of regions inside and outside of the lesions in classification of focal liver lesions (FLLs) is investigated in the present work. In order to design an efficient computer-aided diagnostic (CAD) system for FLLs, a representative database consisting of images with (1) typical and atypical cases of cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small as well as large hepatocellular carcinoma (HCC) lesions and (3) normal (NOR) liver tissue is used. Texture features are computed from regions inside and outside of the lesions. Feature set consisting of 208 texture features, (i.e. 104 texture features and 104 texture ratio features) is subjected to principal component analysis (PCA) for finding the optimal number of principal components to train a support vector machine (SVM) classifier for the classification task. The proposed PCA-SVM based CAD system yielded classification accuracy of 87.2% with the individual class accuracy of 85%, 96%, 90%, 87.5% and 82.2% for NOR, Cyst, HEM, HCC and MET cases respectively. The accuracy for typical, atypical, small HCC and large HCC cases is 87.5%, 86.8%, 88.8%, and 87% respectively. The promising results indicate usefulness of the CAD system for assisting radiologists in diagnosis of FLLs.Defence Science Journal, 2013, 63(5), pp.478-486, DOI:http://dx.doi.org/10.14429/dsj.63.395
Effect of despeckle filtering on classification of breast tumors using ultrasound images
Ultrasound is the most widely used imaging modality for screening of breast tumors. However, due to the presence of speckle noise in an ultrasound image, the diagnostic information gets masked and the interpretation of the breast abnormalities becomes difficult for the radiologist. The texture of the tumor region and the shape/margin characteristics are considered to be important parameters for the analysis of the breast tumors. In the present work, exhaustive experimentation has been carried out for the design of CAD systems for classification of breast tumors by considering (a) original images only, (b) despeckled images only and (c) both original and despeckled images together (hybrid approach).
Total 100 breast ultrasound images (40 benign and 60 malignant) have been used for the analysis. Initially, these images have been despeckled using six filters namely Lee sigma, BayesShrink, DPAD, FI, FB and HFB filters. Total 162 features (149 texture and 13 morphological features) have been computed from both original and despeckled breast ultrasound images and SVM classifier has been used extensively for the classification.
The results of the study indicate that the hybrid approach of CAD system design using texture features computed from original images combined with morphological features computed from images despeckled by DPAD filter yield optimal performance for classification of benign and malignant breast tumors with a classification accuracy of 96.0%. From the promising results of the study it can be concluded that the proposed hybrid CAD system design could be used as a second opinion tool in clinical setting
PCA-SVM based CAD System for Focal Liver Lesions using B-Mode Ultrasound Images
The contribution made by texture of regions inside and outside of the lesions in classification of focal liver lesions (FLLs) is investigated in the present work. In order to design an efficient computer-aided diagnostic (CAD) system for FLLs, a representative database consisting of images with (1) typical and atypical cases of cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small as well as large hepatocellular carcinoma (HCC) lesions and (3) normal (NOR) liver tissue is used. Texture features are computed from regions inside and outside of the lesions. Feature set consisting of 208 texture features, (i.e. 104 texture features and 104 texture ratio features) is subjected to principal component analysis (PCA) for finding the optimal number of principal components to train a support vector machine (SVM) classifier for the classification task. The proposed PCA-SVM based CAD system yielded classification accuracy of 87.2% with the individual class accuracy of 85%, 96%, 90%, 87.5% and 82.2% for NOR, Cyst, HEM, HCC and MET cases respectively. The accuracy for typical, atypical, small HCC and large HCC cases is 87.5%, 86.8%, 88.8%, and 87% respectively. The promising results indicate usefulness of the CAD system for assisting radiologists in diagnosis of FLLs.Defence Science Journal, 2013, 63(5), pp.478-486, DOI:http://dx.doi.org/10.14429/dsj.63.395
Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia
Hematological malignancies i.e. acute lymphoid leukemia and acute myeloid leukemia are the types of blood cancer that can affect blood, bone marrow, lymphatic system and are the major contributors to cancer deaths. In present work, an attempt has been made to design a CAC (computer aided classification system) for diagnosis of myeloid and lymphoid cells and their FAB (French, American, and British) characterization. The proposed technique improves the AML and ALL diagnostic accuracy by analyzing color, morphological and textural features from the blood image using image processing and to assist in the development of a computer-aided screening of AML and ALL. This paper endeavors at proposing a quantitative microscopic approach toward the discrimination of malignant from normal in stained blood smear. The proposed technique firstly segments the nucleus from the leukocyte cell background and then computes features for each segmented nucleus. A total of 331 geometrical, chromatic and texture features are computed. A genetic algorithm using support vector machine (SVM) classifier is used to optimize the feature space. Based on optimized feature space, an SVM classifier with various kernel functions is used to eradicate noisy objects like overlapped cells, stain fragments, and other kinds of background noises. The significance of the proposed method is tested using 331 features on 420 microscopic blood images acquired from the online repository provided by the American society of hematology. The results confirmed the viability or potential of using a computer aided classification method to reinstate the monotonous and the reader-dependent diagnostic methods
Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia
Hematological malignancies i.e. acute lymphoid leukemia and acute myeloid leukemia are the types of blood cancer that can affect blood, bone marrow, lymphatic system and are the major contributors to cancer deaths. In present work, an attempt has been made to design a CAC (computer aided classification system) for diagnosis of myeloid and lymphoid cells and their FAB (French, American, and British) characterization. The proposed technique improves the AML and ALL diagnostic accuracy by analyzing color, morphological and textural features from the blood image using image processing and to assist in the development of a computer-aided screening of AML and ALL. This paper endeavors at proposing a quantitative microscopic approach toward the discrimination of malignant from normal in stained blood smear. The proposed technique firstly segments the nucleus from the leukocyte cell background and then computes features for each segmented nucleus. A total of 331 geometrical, chromatic and texture features are computed. A genetic algorithm using support vector machine (SVM) classifier is used to optimize the feature space. Based on optimized feature space, an SVM classifier with various kernel functions is used to eradicate noisy objects like overlapped cells, stain fragments, and other kinds of background noises. The significance of the proposed method is tested using 331 features on 420 microscopic blood images acquired from the online repository provided by the American society of hematology. The results confirmed the viability or potential of using a computer aided classification method to reinstate the monotonous and the reader-dependent diagnostic methods
The Resurgence of India
Recent economic growth in India has raised its potential to be an economic giant, along with the United States and China. One unique aspect of the Indian economy is that tremendous economic growth has been achieved despite weak infrastructure, resource shortages, and other travails that restrict growth in emerging economies. Recent economic explanations suggest that institutions supporting the economy and economic development are vital to sustained economic growth and may even be more important than infrastructure development. Examining the historic context of the Indian economy, we contend that vital market institutions were always present in India and that economic reforms have unleashed the full potential of these institutions. Using some industry examples, the authors argue that economic policies that strengthen market institutions may be more important compared to conventional policies geared toward infrastructure development