55 research outputs found

    ON THE EXISTENCE AND UNIQUENESS OF A LIMIT CYCLE FOR A LIENARD SYSTEM WITH A DISCONTINUITY LINE

    Get PDF
    In this paper, we investigate the existence and uniqueness of crossing limit cycle for a planar nonlinear Lienard system which is discontinuous along a straight line (called a discontinuity line). By using the Poincare mapping method and some analysis techniques, a criterion for the existence, uniqueness and stability of a crossing limit cycle in the discontinuous differential system is established. An application to Schnakenberg model of an autocatalytic chemical reaction is given to illustrate the effectiveness of our result. We also consider a class of discontinuous piecewise linear differential systems and give a necessary condition of the existence of crossing limit cycle, which can be used to prove the non-existence of crossing limit cycle

    Dual-frequency output of wireless power transfer system with single inverter using improved differential evolution algorithm

    Get PDF
    In wireless charging devices, a transmitter that applies a single inverter to output dual-frequency can effectively solve the charging incompatibility problem caused by different wireless charging standards and reduce the equipment volume. However, it is very difficult to solve the switching angle of the modulated dual-frequency waveform, which involves non-linear high-dimensional multi-objective optimization with multiple constraints. In this paper, an improved differential evolution (DE) algorithm is proposed to solve the transcendental equations of switching angle trains of dual-frequency programmed harmonic modulation (PHM) waveform. The proposed algorithm maintains diversity while preserving the elites and improves the convergence speed of the solution. The advantage of the proposed algorithm was verified by comparing with non-dominated sorting genetic algorithm II (NSGA II) and multi-objective particle swarm optimization (MOPSO). The simulation and experimental results validate that the proposed method can output dual-frequency with a single inverter for wireless power transfer (WPT).Web of Science139art. no. 220

    Tn5AraOut mutagenesis for the identification of Yersinia pestis genes involved in resistance towards cationic antimicrobial peptides

    Get PDF
    Bacterial pathogens display a variety of protection mechanisms against the inhibitory and lethal effects of host cationic antimicrobial peptides (CAMPs). To identify Yersinia pestis genes involved in CAMP resistance, libraries of DSY101 (KIM6 caf1 pla psa) minitransposon Tn5AraOut mutants were selected at 37°C for resistance to the model CAMPs polymyxin B or protamine. This approach targeted genes that needed to be repressed (null mutations) or induced (upstream P(BAD) insertions) for the detection of CAMP resistance, and predictably for improved pathogen fitness in mammalian hosts. Ten mutants demonstrated increased resistance to polymyxin B or protamine, with the mapped mutations pointing towards genes suspected to participate in modifying membrane components, genes encoding transport proteins or enzymes, or the regulator of a ferrous iron uptake system (feoC). Not all the mutants were resistant to both CAMPs used for selection. None of the polymyxin B- and only some protamine-resistant mutants, including the feoC mutant, showed increased resistance to rat bronchoalveolar lavage fluid (rBALF) known to contain cathelicidin and β-defensin 1. Thus, findings on bacterial resistance to polymyxin B or protamine don't always apply to CAMPs of the mammalian innate immune system, such as the ones in rBALF.Fil: Guo, Jitao. Peking University Health Science Center. Department of Microbiology; ChinaFil: Nair, Manoj K. M.. University of Pennsylvania. School of Veterinary Medicine; Estados UnidosFil: Galvan, Estela Maria. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. University of Pennsylvania; Estados UnidosFil: Liu, Shu Lin. Peking University Health Science Center. Department of Microbiology; ChinaFil: Schifferli, Dieter M.. University of Pennsylvania. School of Veterinary Medicine; Estados Unido

    Retrospective seroepidemiology indicated that human enterovirus 71 and coxsackievirus A16 circulated wildly in central and southern China before large-scale outbreaks from 2008

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Large nationwide outbreaks of hand, foot, and mouth disease (HFMD) occurred in China from 2008; most of the cases were in children under 5 years. This study aims to identify the situation of natural human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) infections in children before 2008 in China.</p> <p>Results</p> <p>Retrospective seroepidemiologic studies of HEV71 and CVA16 were performed with 900 serum samples collected from children ≤5 years of age in 2005. The samples were collected from 6 different geographical areas (Anhui, Guangdong, Hunan, Xinjiang, Yunnan, and Heilongjiang provinces) in mainland China. Of the 900 samples, 288 were positive for HEV71; the total positive rate was 32.0% and the geometric mean titer (GMT) was 1:8.5. Guangdong (43.7% and 1:10.8), Xinjiang (45.4% and 1:11.1), and Yunnan (43.4% and 1:12.0) provinces had relatively high rates of infection, while Heilongjiang province (8.1% and 1:4.9) had the lowest rate of infection. On the other hand, 390 samples were positive for CVA16; the total positive rate was 43.4% and the GMT was 1:9.5. Anhui (62.2% and 1:16.0) and Hunan (61.1% and 1:23.1) had relatively high rates, while Heilongjiang (8.0% and 1:4.6) had the lowest rate. Although there is a geographical difference in HEV71 and CVA16 infections, low neutralizing antibody positive rate and titer of both viruses were found in all 6 provinces.</p> <p>Conclusions</p> <p>This report confirmed that HEV71 and CVA16 had wildly circulated in a couple provinces in China before the large-scale outbreaks from 2008. This finding also suggests that public health measures to control the spread of HEV71 and CVA16 should be devised according to the different regional characteristics.</p

    The Impact of Chinese Carbon Emissions Trading System on Efficiency of Enterprise Capital Allocation: Effect Identification and Mechanism Test

    No full text
    The carbon emission trading system, as a significant policy instrument to ensure the Chinese economy achieves a green and low carbon transition, will also affect economic enterprise efficiency. This paper takes listed enterprises in a Chinese carbon trading pilot from 2011 to 2020 as research samples, constructs a multi-period differential model, and explores the impact of Chinese the carbon emission trading system on enterprise capital allocation efficiency. We find that the Chinese carbon emission trading system effectively improves the capital allocation efficiency of enterprises, which is more significant in enterprises with light pollution intensity and strong regional environmental regulation. Further analysis shows that the carbon emission trading system can improve the efficiency of enterprise capital allocation by improving the efficiency of working capital management and asset operation efficiency, while the path of human capital value is not established. Carbon trading market activity and government efficiency play a positive moderating role in the impact of the carbon emission trading system on enterprise capital allocation efficiency. The higher carbon trading market activity and government efficiency, the stronger the relationship between them. The above conclusions provide empirical evidence for the microeconomic effects of the Chinese carbon emission trading system, and also provide a useful reference for the government to implement carbon trading according to local conditions and improve the efficiency of enterprise capital allocation

    The Impact of Chinese Carbon Emissions Trading System on Efficiency of Enterprise Capital Allocation: Effect Identification and Mechanism Test

    No full text
    The carbon emission trading system, as a significant policy instrument to ensure the Chinese economy achieves a green and low carbon transition, will also affect economic enterprise efficiency. This paper takes listed enterprises in a Chinese carbon trading pilot from 2011 to 2020 as research samples, constructs a multi-period differential model, and explores the impact of Chinese the carbon emission trading system on enterprise capital allocation efficiency. We find that the Chinese carbon emission trading system effectively improves the capital allocation efficiency of enterprises, which is more significant in enterprises with light pollution intensity and strong regional environmental regulation. Further analysis shows that the carbon emission trading system can improve the efficiency of enterprise capital allocation by improving the efficiency of working capital management and asset operation efficiency, while the path of human capital value is not established. Carbon trading market activity and government efficiency play a positive moderating role in the impact of the carbon emission trading system on enterprise capital allocation efficiency. The higher carbon trading market activity and government efficiency, the stronger the relationship between them. The above conclusions provide empirical evidence for the microeconomic effects of the Chinese carbon emission trading system, and also provide a useful reference for the government to implement carbon trading according to local conditions and improve the efficiency of enterprise capital allocation

    Profile measurement using a self-mixing laser diode

    Get PDF
    When a fraction of external optical feedback re-enters inside cavity of a laser diode (LD), the laser intensity and its wavelength will thus be altered. The LD in this case is often called as a self-mixing laser diode (SMLD). This paper presents an SMLD for profile measurement. The LD is modulated by the injection current in triangular waveform and a target to be measured is installed on a mechanic scanning device. The reflection light by the target contains its surface profile. The profile information is then carried in the laser intensity and can be pickup by a photodiode packaged in the rear of the LD. We call this modulated laser intensity as self-mixing interferometric (SMI) signal. In this paper, a new algorithm is developed to retrieve the profile from the SMI signal. Results show that the proposed design is able to achieve the measurement of profile with high resolution

    Boosting Type‑I and Type-II ROS Production of Water-Soluble Porphyrin for Efficient Hypoxic Tumor Therapy

    No full text
    As the most successful clinically approved photosensitizers, porphyrins have been extensively employed in the photodynamic therapy (PDT) of cancers. However, their poor water solubility, aggregation-induced self-quenching on ROS generation, and a low tolerance for a hypoxic condition usually result in unsatisfied therapeutic outcomes. Therefore, great efforts have been dedicated to improving the PDT efficacy of porphyrin-type photosensitizers in treating hypoxic tumors, including combination with additional active components or therapies, which can significantly complicate the therapeutic process. Herein, we report a novel water-soluble porphyrin with O-linked cationic side chains, which exhibits good water solubility, high photostability, and significantly enhanced ROS generation efficacy in both type-I and type-II photodynamic pathways. We have also found that the end charges of side chains can dramatically affect the ROS generation of the porphyrin. The cationic porphyrin exhibited high in vitro PDT efficacy with low IC50 values both in normoxia and hypoxia. Hence, during in vivo PDT study, the cationic porphyrin displayed highly effective tumor ablation capability. This study demonstrates the power of side-chain chemistry in tuning the photodynamic property of porphyrin, which offers a new effective strategy to enhance the anticancer performance of photosensitizers for fulfilling the increasing demands for cancer therapy in clinics

    MicroRNA-142-3p Negatively Regulates Canonical Wnt Signaling Pathway.

    No full text
    Wnt/β-catenin signaling pathway plays essential roles in mammalian development and tissue homeostasis. MicroRNAs (miRNAs) are a class of regulators involved in modulating this pathway. In this study, we screened miRNAs regulating Wnt/β-catenin signaling by using a TopFlash based luciferase reporter. Surprisingly, we found that miR-142 inhibited Wnt/β-catenin signaling, which was inconsistent with a recent study showing that miR-142-3p targeted Adenomatous Polyposis Coli (APC) to upregulate Wnt/β-catenin signaling. Due to the discordance, we elaborated experiments by using extensive mutagenesis, which demonstrated that the stem-loop structure was important for miR-142 to efficiently suppress Wnt/β-catenin signaling. Moreover, the inhibitory effect of miR-142 relies on miR-142-3p rather than miR-142-5p. Further, we found that miR-142-3p directly modulated translation of Ctnnb1 mRNA (encoding β-catenin) through binding to its 3' untranslated region (3' UTR). Finally, miR-142 was able to repress cell cycle progression by inhibiting active Wnt/β-catenin signaling. Thus, our findings highlight the inhibitory role of miR-142-3p in Wnt/β-catenin signaling, which help to understand the complex regulation of Wnt/β-catenin signaling
    corecore