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Abstract
In this paper we study the non-existence and the uniqueness of limit cycles for
the Liénard differential equation of the form x ′′ − f (x)x ′ + g(x) = 0 where
the functions f and g satisfy xf (x) > 0 and xg(x) > 0 for x �= 0 but can be
discontinuous at x = 0.

In particular, our results allow us to prove the non-existence of limit cycles
under suitable assumptions, and also prove the existence and uniqueness of a
limit cycle in a class of discontinuous Liénard systems which are relevant in
engineering applications.

Mathematics Subject Classification: 58F21, 34C05, 58F14

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Piecewise smooth dynamical systems serve as models for a great variety of engineering
devices and they deserve considerable attention, see for instance the recent book [1] and
references therein. For instance, in modern nonlinear control techniques the lack of smoothness
is sometimes enforced either by the consideration of hybrid systems or by the artificial
introduction of discontinuities, see [23].

Even for low-dimensional continuous models the analysis of non-smooth systems is an
intricate problem. Perhaps one of the most striking examples is the seemingly simplest case
of continuous piecewise linear differential systems with only two regions separated by a
hyperplane which contains the unique equilibrium point. Surprisingly enough, in dimension
three or higher the stability of such an equilibrium has not yet been explicitly characterized,
see [3].
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When the vector field defining the differential system is discontinuous, the necessity to
enlarge the mathematical concept of solution arises from the inclusion of non-standard solutions
such as sliding solutions or impact solutions. Another obstacle to overcome in the analysis
of discontinuous differential systems is the absence of canonical forms that can cope with a
sufficiently broad class of systems, in contrast to what can be done for continuous non-smooth
systems, see [2]. The above drawbacks frequently compel researchers to analyse the possible
different models using a case-by-case approach.

One of the main problems in the qualitative theory of planar differential equations is to
identify the existence of the limit cycle and its number. The restriction of this problem to
polynomial differential equations is the well-known 16th Hilbert’s problem [11]. Dealing
with planar differential systems, a celebrated and rather general canonical form is the Liénard
equation. Since Hilbert’s problem turns out to be a strongly difficult one, Smale [20] has
particularized it to Liénard differential systems in his list of problems for the present century.

For just continuous or even smooth Liénard systems there are many results on the non-
existence, existence and uniqueness of limit cycles, see for instance [6, 8, 15, 24, 25]. Going
beyond the smooth case, the first natural step is to allow non-smoothness while keeping the
continuity, as has been done in some recent works [9, 12, 13]. In a further step, other authors
have considered a line of discontinuity in the vector field defining the planar system, see [10,27].

In [10] a complete study of the number and stability of limit cycles was done for planar
piecewise linear systems with both linear dynamics of focus type, and having a symmetry.
Under such rather strong assumptions, those authors were able to solve the problem by writing
the corresponding Liénard form and computing appropriate return maps on the discontinuity
line. In [27] the authors studied a generalization of the Hopf bifurcation for systems with
one parameter and having a line of discontinuity passing through the origin, which is the only
point where both vector fields vanish for all values of the parameter. It was assumed that for a
parameter critical value the equilibrium point at the origin becomes non-hyperbolic, giving rise
to the bifurcation. The analysis was done in a neighbourhood of the origin assuming dynamics
of focus type for the origin on both sides of the discontinuity line. Both works [10, 27] show,
as suggested previously, how the advance in the analysis of non-smooth systems must proceed
by considering specific situations with some restrictive hypotheses, which cover only partially
the huge set of all possible cases.

In this paper we provide a new contribution to the study of the existence of limit cycles for
Liénard differential systems which are allowed to have a line with some kind of discontinuity.
In particular, we consider for x ∈ [a, b], with −∞ < a < 0 < b < ∞, the Liénard differential
equation

x ′′ − f (x)x ′ + g(x) = 0, (1)

where a jump discontinuity is allowed for both functions f and g at x = 0. As will be seen, this
case gives rise to discontinuous planar Liénard differential systems without sliding solutions
but their analysis, far from being trivial, is important as a natural first step in the study of other
discontinuous systems.

The hypotheses to be fulfilled by the corresponding vector field are rather general and no
special symmetry will be assumed. Since our motivation comes from the analysis of piecewise
linear systems, we focus our attention on such a case but the main results are valid for general
non-smooth systems.

The rest of the paper is organized as follows. The statement of the assumptions and the
main theoretical results along with an illustrative example of application appear in section 2.
The specific case of discontinuous piecewise linear systems is presented in section 3, where
a theorem of the existence of limit cycles is also included. In section 4 a discussion on the
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obtained results and how to improve them in the future is given. Some preliminary results
about the local behaviour near the origin and its relation to possible periodic orbits are given
in section 5. The proofs of the main theorems appear in sections 6 and 7.

2. Statement of the main results

Consider the Liénard differential equation (1) for x ∈ [a, b], where −∞ < a < 0 < b < ∞,
and the functions f and g are given by

f (x) =
{

f1(x) if x < 0,

f2(x) if x > 0,
g(x) =

{
g1(x) if x < 0,

g2(x) if x > 0.
(2)

It is assumed that f1 and g1 are continuously differentiable in [a, 0] and f2, g2 continuously
differentiable in [0, b]. Note that the functions f and g are not defined at x = 0, so that if we
eventually define f (0) and g(0), they are allowed to have a jump discontinuity at the origin.

By using the classical Liénard plane we can obtain the equivalent differential system:

x ′ = F(x) − y,

y ′ = g(x),
where F(x) =

∫ x

0
f (s) ds, (3)

and it is understood that F(0) = 0, while g(0) is not defined for now.
This system has the associated vector field

X(x) =
{

X1(x) if x � 0,

X2(x) if x � 0,
where Xi (x) =

(
F(x) − y

gi(x)

)
, (4)

with x = (x, y)T. The ambiguity in the definition of X(x) on x = 0 is clarified below.
Since the system can be discontinuous we must adopt some criteria in order to define

solutions starting at or passing through the allowed discontinuity line x = 0. Typically this
is done by using the so-called Filippov approach, see for instance [16]. However, here only
the vertical component of the vector field (4) can be discontinuous at the y-axis, while its
horizontal component turns out to be continuous. In fact, we have x ′ = −y on x = 0. Thus, if
we consider, for instance, orbits starting at points with x < 0, then these orbits are well defined
whenever they do not touch the y-axis but can arrive at this straight line (obviously only at
points (0, y) with y � 0) by extending g(x) as if g(0) were equal to g1(0). Now starting from
the point (0, y) with y < 0 we assume that g(0) = g2(0) and we continue the orbit inside
x > 0 using system (3).

From the above paragraph and using the standard terminology of planar Filippov systems
[16], the crossing set of the discontinuity line of system (3) includes the negative y-axis.
Similar arguments for x > 0 imply that the crossing set is the y-axis without the origin and so
no sliding segments appear. In [16] the origin is then called a singular isolated sliding point.

In short, except for orbits arriving at the origin and assuming that the system is actually
discontinuous, it is natural to allow concatenation of solutions in an obvious way so that the
system has no sliding (Filippov) solutions. The only possible singular point may be the origin,
where each vector field can either vanish or have a tangency with the y-axis. If at least one
vector field vanishes at the origin we say that it is a boundary equilibrium point. If both vector
fields are not zero at the origin we still can have a pseudo-equilibrium point when both vector
fields are anti-collinear (i.e. g1(0)g2(0) < 0). Then it behaves like an equilibrium point that
may be reached in finite time. Its stability and local phase portrait will be determined by
studying its nearby orbits, see figure 1.
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Figure 1. The three main cases for the local phase plane at the origin when it is not a boundary
equilibrium point: regular point, pseudo-saddle and pseudo-focus.

Proposition 1. For system (3) the following statements hold.

(a) If g1(0)g2(0) > 0 then the origin can be thought of as a regular point.
(b) If g1(0)g2(0) = 0 then the origin is a boundary equilibrium point.
(c) If g1(0)g2(0) < 0 then the origin is a pseudo-equilibrium point, being of saddle type if

g1(0) > 0 and g2(0) < 0 and of focus type if g1(0) < 0 and g2(0) > 0.

Proposition 1 is proved in section 5.
In the absence of any symmetry and similarly to what is done in [27], the existence of

only one singular point at the origin (a pseudo-equilibrium point or a proper equilibrium point)
is assumed. This assumption is not so strong if one recalls that all the results of this paper
are stated for the restriction of a planar vector field to the band a < x < b with a < 0 < b.
Furthermore, in contrast to the approach followed in [27], the analysis to be done has a non-
local character and the continuity at the origin is not required at all. Then, from the point of
view of practical engineering problems, the case of a singular point of focus type is the most
interesting case, because then systems can exhibit oscillatory behaviour, and frequently it is
desirable to generate or avoid self-sustained oscillations.

Thus, we are mainly interested in giving conditions for the existence of periodic orbits. In
order to ensure that there are no more singular points different from the origin and to exclude
the saddle case of proposition 1, the following hypothesis is assumed.

(H1) The function g satisfies xg(x) > 0 for x �= 0.

We will also require for the sake of simplicity that the divergence of the vector field does not
change its sign on each side of the discontinuity line, i.e.

(H2) the function f satisfies xf (x) > 0 for x �= 0.

Under this hypothesis we have a positive divergence for x > 0 and a negative divergence for
x < 0. Then in order to have some periodic orbit surrounding the origin, there must be some
balance between the x-positive and the x-negative parts of the interior of the bounded region
limited by the periodic orbit. This idea is precisely stated in lemma 6, but in the same spirit of
comparing the x-positive and the x-negative half-planes and following [4], it will be useful to
introduce some auxiliary functions as follows.

Under hypothesis H2 and recalling the definition of F in (3), we define a variable
p = p(x) = F(x). As p′(x) = f (x), then p(x) � 0 for all x and sgn(p′(x)) = sgn(x) for
x �= 0. We deduce that the function p(x) has inverse functions both for x � 0 and for x � 0,
namely, the non-positive decreasing function

x1 : [0, F (a)] → [a, 0], such that F(x1(p)) = p, (5)

and the non-negative increasing function

x2 : [0, F (b)] → [0, b], such that F(x2(p)) = p. (6)
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Hence, for x �= 0 we have that both systems (3) and (4) are equivalent to the two differential
equations

dy(xi(p))

dp
= g(xi(p))

F (xi(p)) − y

1

f (xi(p))
= 1

p − y

g(xi(p))

f (xi(p))
, (7)

where i = 1, 2, according to x < 0 or x > 0, respectively, and these new differential equations
are both meaningful only for p > 0. Now by considering the functions

hi(p) = g (xi(p))

f (xi(p))
; (8)

equation (7) can be written in a more compact form:

dy (xi(p))

dp
= hi(p)

p − y
. (9)

Note that hi(p) > 0 for p > 0 and i = 1, 2 and that the effect of considering equation (9)
instead of the original system (3) or (4) can be thought of as the plane (x, y) having been
folded into the half-plane (p, y) with p > 0.

When h1(p) = h2(p) for p sufficiently small and the origin is a topological focus it is
not difficult to show that we have indeed a centre, see for instance theorem 11.3 in [14]. We
add a third hypothesis precluding such a possibility. It is written in a dual way to facilitate the
checking of its validity in the applications.

(H3) Assume that there exist the two limits

lim
x→0−

g(x)

f (x)
= lim

p→0+
h1(p) = l1, lim

x→0+

g(x)

f (x)
= lim

p→0+
h2(p) = l2

satisfying

0 � l2 � l1 < ∞,

and if l2 = l1 then h2(p) < h1(p) for p > 0 and sufficiently small (when l2 < l1 this
last requirement is always fulfilled).

It is worth mentioning that this hypothesis implies that the origin is topologically an
unstable focus when l2 > 0, see lemma 10 below. The next result states a necessary condition
for the existence of periodic orbits under the above hypotheses, also giving an estimate of their
minimal size.

Theorem 2. Let f and g be the functions defined in (2) such that fi and gi are of class C1 in
[a, 0] and [0, b] for i = 1, 2, respectively, where −∞ < a < 0 < b < ∞. Let F and hi be
the functions defined in (3) and (8) and assume that hypotheses H1–H3 are fulfilled. If system
(3) has a periodic orbit contained in the band a < x < b, then the system

F(x1) = F(x2),
g(x1)

f (x1)
= g(x2)

f (x2)
, (10)

has at least one solution (x1, x2) = (s1, s2) with a < s1 < 0 < s2 < b, or equivalently there
exists at least one solution p̂ ∈ (0, F (a)) ∩ (0, F (b)) for the equation h1(p) = h2(p).

When such a periodic orbit does exist, it surrounds the origin and cuts the two verticals
x = s1 and x = s2, (s1, s2) being the smallest solution of (10).

Theorem 2 is proved in section 5. To illustrate how it can be applied, let us consider a
discontinuous piecewise quadratic polynomial case, namely,

f (x) =
{

f1(x) = −2 − 8x − 24x2, if x < 0,

f2(x) = 1 − 2x + 3x2, if x > 0
(11)
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Figure 2. Graphs of functions f and g of the example given by (11) and (12). Hypotheses H1 and
H2 are satisfied. Hypothesis H3 is fulfilled with 0 < l2 = 1 < l1 = 3/2.

and

g(x) =
{

g1(x) = −3 + 2x − x2, if x < 0,

g2(x) = 1 + x + 2x2, if x > 0,
(12)

see figure 2. According to (3), we obtain

F(x) =
{

−2x(1 + 2x + 4x2), if x < 0,

x(1 − x + x2), if x > 0,
(13)

and then equation F(x1) = F(x2) in (10) is satisfied only if x2 = −2x1. Substituting this
relation in the second equation of (10), it is easy to conclude that the only solution is x1 = −1/5,
x2 = 2/5. Then from theorem 2 the system cannot have limit cycles totally contained in the
band −1/5 < x < 2/5, but it can exhibit limit cycles cutting the vertical lines x = −1/5 and
x = 2/5. In fact, by numerical simulation, one limit cycle is observed, as shown in figure 3,
but for the moment we have no rigorous information about its stability and uniqueness.

Now we give a result on the uniqueness of limit cycles for discontinuous Liénard equations
satisfying hypotheses H1–H3 which complements theorem 2.

Theorem 3. Under the same conditions of theorem 2, assume that system (10) has exactly one
solution (x1, x2) = (s1, s2) with a < s1 < 0 < s2 < b, or equivalently there exists exactly one
solution p̂ ∈ (0, F (a)) ∩ (0, F (b)) for the equation h1(p) = h2(p). The following statement
holds.

If the positive function

α(x) = g(x)

f (x)F (x)
(14)

is increasing for x ∈ (a, 0), or equivalently the positive function

h1(p)

p
(15)

is decreasing for p ∈ (0, F (a)), then system (3) has at most one periodic orbit contained in
the band a < x < b and, if it exists, it has a negative characteristic exponent.

Theorem 3 is proved in section 5. Returning to the previous example, and using the fact
that the function defined in (14), namely,

α(x) = −3 + 2x − x2

2x(2 + 8x + 24x2)(1 + 2x + 4x2)
,
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Figure 3. The limit cycle of the illustrative example cuts the two vertical lines x = −1/5 and
x = 2/5. From theorem 3 this limit cycle is unique and stable.

turns out to be increasing for x < 0, we conclude from theorem 3 that the observed limit cycle
is unique and stable.

Note that even though our main motivation is the case of discontinuous systems, the
above results can also be applied to continuous differential systems. Particular applications
of theorems 2 and 3 to specific families of Liénard equations are presented in the following
sections.

3. Application to discontinuous piecewise linear systems

We devote this section to the application of the above results to discontinuous piecewise linear
differential systems. This class is increasingly used in engineering and applied sciences to
model a large variety of technological devices and physical or biological systems [5, 22, 26].
The study of these systems is also useful in order to be able to tackle other piecewise smooth
systems not necessarily composed by linear ones, in the same spirit as done in [19].

The analysis of these kinds of systems seems to be simple as one can easily integrate the
system in each linear region. However, the matching of the different parts of a given solution is
a difficult task since the knowledge of the different flight times in every region is only implicit,
see for instance [9, 10]. Thus, the existence of limit cycles in piecewise linear systems is a
non-elementary problem which sometimes forces researchers to extend perturbation methods
from smooth systems to cope with these non-smooth ones, as done in [18, 21] for example.

Here our attention is restricted to the case of piecewise linear systems with only two linear
regions. Similar differential systems had been considered before in [9] but under the assumption
of continuity for the corresponding vector field. It should be remarked that in practice models
with only two linear regions satisfying our hypotheses are hardly found, because then we have
a region not bounded in the x-variable with a positive divergence. However, such a structure
frequently appears when focusing attention on an x-bounded part of the phase plane where
only two zones are involved.
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Theorem 4. Consider the Liénard piecewise linear differential system:{
ẋ = t1x − y,

ẏ = d1x + a1,
if x < 0,

{
ẋ = t2x − y,

ẏ = d2x + a2,
if x � 0, (16)

where it is assumed that

t1 < 0, d1 > 0, a1 < 0, t2 > 0, d2 > 0, a2 > 0.

Then the following statements hold.

(a) If a2/t2 < a1/t1 then a necessary condition for the existence of periodic orbits is
d2/t

2
2 > d1/t

2
1 . If the system has periodic orbits, then it has a unique periodic orbit

which is a stable limit cycle.
(b) If a1/t1 < a2/t2 then a necessary condition for the existence of periodic orbits is

d1/t
2
1 > d2/t

2
2 . If the system has periodic orbits, then it has a unique periodic orbit

which is an unstable limit cycle.
(c) If a2/t2 = a1/t1 then either the system has no periodic orbits when d1/t

2
1 �= d2/t

2
2 or it

has a centre at the origin when d1/t
2
1 = d2/t

2
2 .

Theorem 4 is proved in section 7. Observe that statement (c) of theorem 4 when
0 < a2/t2 = a1/t1 and d1/t

2
1 = d2/t

2
2 says that the origin is a centre even when the dynamics

of the linear differential system in each half-plane could be of node type. This situation occurs
when

di

t2
i

� 1

4

for i = 1, 2. When both dynamics are of focus type, and under the assumptions of statements
(a) and (b) of theorem 4, the necessary condition for the existence of limit cycles is also
sufficient, as stated in our last main result.

Theorem 5. Under the assumptions of theorem 4, and if

di

t2
i

>
1

4

for i = 1, 2, then the following statements hold.

(a) If a2/t2 < a1/t1 then the system has periodic orbits if and only if d2/t
2
2 > d1/t

2
1 , and in

such a case it has a unique periodic orbit which is a stable limit cycle.
(b) If a1/t1 < a2/t2 then the system has periodic orbits if and only if d1/t

2
1 > d2/t

2
2 , and in

such a case it has a unique periodic orbit which is an unstable limit cycle.

Theorem 5 is proved in section 7. Note that this result completely characterizes the number
and stability of limit cycles in the focus–focus case.

4. Discussion and future work

In previous sections some new results have been stated regarding possible limit cycles of
Liénard systems having a line of discontinuity and no sliding solutions. Under appropriate
hypotheses on the vector field on both sides of the discontinuity line, a necessary condition
for the existence of limit cycles is given, and when some additional conditions are fulfilled a
uniqueness result has been stated. The approach that follows, which is inspired by the work
in [4], relies on a comparison method of the resulting semi-orbits after folding the plane along
the discontinuity line.
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Obviously some existence results ensuring that limit cycles do exist are required to
complete the analysis. For instance, in the piecewise linear case the corresponding existence
theorem is given in theorem 4. A natural question then is how to proceed in a general case to
achieve such existence theorems. To answer this question in the continuous case it is usual to
look for positive invariant annular regions; we strongly feel that with the adequate requirements
to validate some extension of the Poincaré–Bendixson theorem, the analogous approach is the
right way. In this sense special attention should be paid to possible sliding solutions.

Thus, future work on this subject must fill the actual gap on limit cycle existence results
for general discontinuous systems. Keeping the approach followed in this paper, and with
reference to the (p, y)-plane and looking for invariant annular regions, one possibility is to
obtain estimates for the arriving points on the negative y-axis of semi-orbits starting from the
same point on the positive y-axis. Another possible approach is to attempt the extension to
the discontinuous case of known results on the existence of limit cycles for continuous planar
vector fields. Perhaps one good candidate is a result of Filippov, see [24], which has a similar
flavour to that stated here, but folding the plane by using the function g instead of f .

In order to be precise, let us comment on the difficulties to be overcome by studying a
concrete example. In [27] the generalized Hopf bifurcation of a discontinuous mathematical
model of a mechanical brake system is considered, namely, the planar system

x ′ = y,

y ′ = b±(λ)y − a±x − x3, ±x > 0,
(17)

where b±(λ) = b±
0 +b±

1 λ is a function of the bifurcation parameter λ. The system is continuous
at the origin, and other parameter values are a+ = 1/10, a− = 1/5, b+

0 = 1/20, b−
0 = −√

2/20
and b±

1 = ±1 (after correcting some evident typographical mistakes in [27]). For such values,
after a local analysis the origin turns out to be a non-hyperbolic focus for λ = 0 and a
generalized Hopf bifurcation is then predicted. According to the results in [27], we can ensure
that one stable limit cycle appears for λ > 0 and sufficiently small.

Let us write the corresponding Liénard equation, namely,

x ′′ − b±(λ)x ′ + a±x + x3 = 0,

so that, regarding (1), f (x) = b±(λ) and g(x) = a±x + x3 for ±x > 0. In what follows it
will be shown that theorem 2 suggests the existence of the aforementioned generalized Hopf
bifurcation after straightforward computations.

Obviously the function g is non-smooth but continuous, so that the discontinuity of system
(17) can be removed by writing its Liénard form (3), namely,

x ′ = b±(λ)x − y,

y ′ = a±x + x3,
± x > 0, (18)

which is clearly continuous. This remark emphasizes that some discontinuous systems are no
longer discontinuous after some variable changes.

Regarding system (18), since hypothesis H1 is always satisfied but hypothesis H2 is
only fulfilled for λ > −1/20, from now on we restrict our attention to this parameter range.
Regarding hypothesis H3, we see that l1 = l2 = 0 and so we need to check the condition
h2(p) < h1(p) for p sufficiently small. From (5), (6) and (18), we see that

x1(p) = p

b−(λ)
, x2(p) = p

b+(λ)

so that

h1(p) = a−p

b−(λ)2
+

p3

b−(λ)4
, h2(p) = a+p

b+(λ)2
+

p3

b+(λ)4
.
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Then hypothesis H3 is satisfied if h′
2(0) < h′

1(0), which amounts to the condition

a+

b+(λ)2
<

a−

b−(λ)2
. (19)

After some simple calculations we get the equivalent condition

λ

(
λ +

2 − √
2

10

)
> 0,

which in the parameter range under study leads to λ > 0. Assuming this condition, in order
to apply theorem 2 we solve the equation h1(p) = h2(p) for p > 0, arriving at the solution

p̂2 =
a−

b−(λ)2
− a+

b+(λ)2

1

b+(λ)4
− 1

b−(λ)4

, (20)

which, assuming inequality (19), corresponds to one real positive value if and only if
|b+(λ)| < |b−(λ)|, and this happens for λ > −(1 +

√
20)/40 and in particular for λ > 0.

The above value of p̂ vanishes for λ = 0 and it is an increasing function of λ.
In order to apply theorem 2 when λ < 0, let us make in (18) the change in variables

(x, y, t) → (−x, y, −t) to obtain its specular image with time reversal, namely,

x ′ = −b∓(λ)x − y,

y ′ = a∓x + x3,
± x > 0.

Here all the hypotheses H1–H3 are fulfilled for −1/20 < λ < 0, but now expression (20)
turns out negative and according to theorem 2 no limit cycles are possible.

Thus, theorem 2 precludes the existence of limit cycles for λ < 0 but allows it when
λ > 0. All these facts suggest the bifurcation predicted in [27] and also that the size of the
limit cycle that bifurcates grows with λ.

Unfortunately, in this case the required condition on the function α(x) defined in theorem 3
is not fulfilled and so we cannot deduce the stability and uniqueness of the limit cycle that
bifurcates. This fact is not so deceptive, since system (18) is continuous with a boundary
equilibrium point and we already know that this is one of the most intricate situations in non-
smooth systems, see [3]. On the other hand, in this continuous case it is not difficult to show
the existence of the limit cycle when λ > 0 using the aforementioned theorem of Filippov,
see [24].

5. On the origin and the periodic orbits

In this section we prove proposition 1 and we give some preliminary results necessary for the
proof of theorem 2.

Proof of proposition 1. The vector fields at the origin are X1(0, 0) = (0, g1(0)) and
X2(0, 0) = (0, g2(0)), see (4). Then from (1) we have x ′′(0) = −gi(0) for i = 1, 2. Therefore,
if g1(0) and g2(0) are both positive or both negative then X1(0, 0) and X2(0, 0) are collinear
and the orbits of both vector fields in a neighbourhood of the origin have the same convexity.
Consequently we can define the vector field at the origin in such a way that the orbit through
the origin has a quadratic tangency with the y-axis. This completes the proof of statement (a).

Statement (b) follows directly from the definitions.
If g1(0)g2(0) < 0 then the vector fields at the origin are anti-collinear and so the origin

is a pseudo-equilibrium point. Assume g1(0) > 0 and g2(0) < 0. Then the vector field X1
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has a visible quadratic tangency, that is, the orbit of x′ = X1(x) through the origin is locally
contained in x � 0 for backward and forward times. Similarly, the vector field X2 also has a
visible quadratic tangency in x � 0, see figure 1. Hence, the origin is a topological saddle.

When g1(0) < 0 and g2(0) > 0 the vector fields X1 and X2 have invisible quadratic
tangencies. That is, the unique point of the orbit of x′ = X1(x) through the origin locally
contained in x � 0 for backward and forward times is the origin itself, and similarly for X2;
see figure 1. Now the origin is a topological focus. This ends the proof of statement (c). �

Now we extend a necessary condition for the existence of periodic orbits fulfilled by
smooth vector fields to the case of our discontinuous differential systems. The following
result, which is not valid when there exists the possibility of sliding solutions, is included with
its proof for the sake of completeness, because we have not previously found it explicitly.

Lemma 6. Consider the functions f and g defined as in (2). If system (3) has a periodic orbit
� and the interior of the bounded region limited by � includes the origin and it is denoted by
�, then � crosses the y-axis at two points different from the origin, and the function f satisfies
the condition ∫ ∫

�

f (x) dx dy = 0.

Proof. Since x ′ = −y on x = 0 and the origin is in �, it follows that � intersects the y-axis
at two points M = (0, yM) and N = (0, yN) with yM < 0 < yN .

We define �1, �1, and �2 , �2 to be part of � and � contained in x < 0 and x > 0,
respectively. We denote by � the oriented segment on the y-axis from point M to point N

while the same segment with the opposite orientation is denoted by −�, see figure 4. Then
by applying Green’s theorem we have∫ ∫

�

f (x) dx dy =
∫ ∫

�1

f (x) dx dy +
∫ ∫

�2

f (x) dx dy

=
∫

�1

[F(x) − y] dy − g(x) dx +
∫

�

[F(x) − y] dy − g(x) dx

+
∫

�2

[F(x) − y] dy − g(x) dx +
∫

−�

[F(x) − y] dy − g(x) dx

= 0 +
∫ yN

yM

(−y) dy + 0 +
∫ yM

yN

(−y) dy = 0,

and the conclusion follows. �

6. Proof of theorems 2 and 3

First we prove theorem 2.

Proof of theorem 2. We start by noting that if system (3) has singular points they must be
on the y-axis because xg(x) > 0 if x �= 0. Also we have g1(0) � 0 and g2(0) � 0. Since
x ′ = −y when x = 0 the unique possible singular point is the origin, and from proposition 1
it is a boundary equilibrium point or a pseudo-focus because g1(0)g2(0) � 0.

Assume that system (3) has a periodic orbit � contained in the band a < x < b. Obviously,
the orbit � cannot be totally contained in the region a < x < 0 because then, as a consequence
of the Poincaré–Bendixson theorem for phase portraits of smooth systems in the plane (see for
instance [7]), the interior of the bounded region limited by � should contain a singular point.
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Figure 4. Some notable points associated with a periodic orbit (thick line). The points
A = (xA, yA) and B = (xB, yB), where yA = F(xA) and yB = F(xB), are the leftmost and
rightmost points of the periodic orbit, respectively. For x < 0, the orbit �̃ passing through
C = (xC, yC) is sketched, where yB = yC = F(xC). The line � is the graph of the curve
y = F(x).

However, we know that the only possible singular point is the origin. Analogously, the orbit �

cannot be totally contained in the region 0 < x < b. Thus, � being a closed curve and since
x ′ = −y on the y-axis, we conclude that it crosses the y-axis from the left to the right at a
point with y < 0 and from the right to the left at a point with y > 0, surrounding the origin in
the counterclockwise sense.

Next other geometrical properties of the periodic orbit � will be established. Let
A = (xA, yA) and B = (xB, yB) be the points on � for which the variable x assumes its
minimum and maximum values, then xA < 0 < xB. Since for x �= 0 we have

dx

dy
= F(x) − y

g(x)
, (21)

and this derivative vanishes for x = xA and x = xB, one obtains yA = F(xA) and yB = F(xB).

Moreover this derivative only vanishes at points A and B. Indeed when dx/dy = 0 the second
derivative is given by

d2x

dy2
=

(
dF

dx

dx

dy
− 1

)
g(x) − [F(x) − y]

dg

dx

dx

dy

g(x)2

∣∣∣∣∣∣∣∣dx

dy
= 0

= − 1

g(x)
,

which has a definite sign, in fact, the opposite sign to x. Then derivative (21) vanishes only
once for x > 0 and only once for x < 0, and so points A and B are the unique points where
the orbit � intersects the curve defined by the equation y = F(x) denoted by �.

It follows that � intersects any straight line L defined by x = q with xA < q < xB in
exactly two points (q, yα) and (q, yβ) with yα < F(q) < yβ . In particular, for q = 0 such
points are denoted by M = (0, yM) and N = (0, yN) with yM < 0 < yN . Moreover the
path � can be described as the graph of y = yl(x) on the lower arc AMB and by the graph
of y = yu(x) on the upper arc ANB. Clearly yl(x) < F(x) < yu(x); that is, � is below
the curve � on the lower arc AMB, while it is over the curve � on the upper arc ANB, see
figures 4 and 5.
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y = F(x)

p = p
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yl(x2(p))
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yl(x1(p))

L

KK

l1
l2

h2(p)

h1(p)
y = p

O

p

x1(p) x2(p)
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Nyu(x1(p))
yu(x2(p))

N2

O

M2

L1

Figure 5. On the left, figure 4 is repeated and all the notable points are labelled. On the right, and
by using the coordinate p instead of x, the complete plane is folded keeping the y-coordinate, so
that the two parts of the periodic orbit can be compared. Thus, in the new coordinates (p, y) both
semi-orbits �1 ≡ NAM and �2 ≡ MBN are in the half-plane p > 0, and they must enclose the
same area with the y-axis.

Differential equations (9) can be continuously extended to x = 0 by putting hi(0) = li ,
so that they define the orbits of the following two differential systems, both defined for p � 0:

dp

dτ
= p − y,

dy

dτ
= hi(p),

(22)

for i = 1, 2. The arc NAM of the periodic orbit � can be parametrized as

�1(p) =
{

yl(x1(p)) if yl(x1(p)) � yA,

yu(x1(p)) if yA � yu(x1(p)),

while the arc MBN of � can be parametrized as

�2(p) =
{

yl(x2(p)) if yl(x2(p)) � yB,

yu(x2(p)) if yB � yu(x2(p)),

where

yl(x1(0)) = yl(x2(0)) = yM < 0 and yu(x1(0)) = yu(x2(0)) = yN > 0. (23)

Before proceeding further we now state some results from the theory of differential
inequalities, providing their proof for the sake of completeness.

Lemma 7. Assume that the graphs of two continuous functions yi : [c, d] → R are solution
curves of some given Lipschitz differential systems

dp

dτ
= p − y,

dy

dτ
= φi(p),
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for i = 1, 2, respectively. Assume also that the inequalities

p − y1(p) > 0 and p − y2(p) > 0, for all p ∈ (c, d),

and

0 < φ1(p) < φ2(p), for all p ∈ (c, d),

are satisfied. The following statements hold.

(a) If y1(c) � y2(c) then y1(p) < y2(p) for all p ∈ (c, d].
(b) If y1(d) � y2(d) then y1(p) > y2(p) for all p ∈ [c, d).

Proof. For all p ∈ (c, d) such that y1(p) � y2(p) we have

dy1

dp
= φ1(p)

p − y1(p)
� φ1(p)

p − y2(p)
<

φ2(p)

p − y2(p)
= dy2

dp
,

so that the function y2 − y1 is strictly increasing in (c, d) and the conclusion of statement (a)
follows easily.

To show statement (b) suppose in contrast that there exists p̄ ∈ [c, d) such that
y1(p̄) � y2(p̄). Then by statement (a) we conclude that y1(p) < y2(p) for all p ∈ (p̄, d], and
in particular that y1(d) < y2(d), which is a contradiction. �

Remark 8. An analogous result for lemma 7 is also true by reversing all the inequalities in
the statements when p − y1(p) < 0 and p − y2(p) < 0 (i.e. when the orbits are in the region
y > p) while 0 < φ1(p) < φ2(p) still holds for all p ∈ (c, d).

From the hypotheses we get that 0 � h2(0) � h1(0) and h2(p) < h1(p) for 0 < p 
 1.
Then from (9) and (23) and using statement (a) of lemma 7 in the interval [0, p̄] with p̄

sufficiently small, we obtain

yl(x2(p)) < yl(x1(p)) for 0 < p 
 1.

On the other hand, by using remark 8 we have analogously

yu(x1(p)) < yu(x2(p)) for 0 < p 
 1. (24)

Next we will show that both paths �1(p) and �2(p) cross themselves at least at one point.
Let us build a system that ‘unfolds’ the two systems (22) in the complete plane, namely,


dp

dτ
= −p − y,

dy

dτ
= −h1(−p),

if p < 0,




dp

dτ
= p − y,

dy

dτ
= h2(p).

if p > 0, (25)

System (25) must have a counterclockwise periodic orbit �̂ constituted by a path �̂1, which is
the symmetrical one with respect to the y-axis of the path �1(p) and the path �2(p). System
(25) is the Liénard system

dp

dτ
= |p| − y,

dy

dτ
= h(p),

where

h(p) =
{
h2(p) if p > 0,

−h1(−p) if p < 0.
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Then by applying lemma 6 we have∫ ∫
�

sgn(p) dp dy = 0 = −S1 + S2, (26)

where � is the interior of the region limited by �̂ and S1 and S2 are the areas of � on the left-
and right-hand sides of the line p = 0, respectively. If the path �1(p) does not cut the path
�2(p), then S1 �= S2 and (26) cannot be fulfilled. So the path �1(p) must cut the path �2(p)

to enclose the same area with the y-axis, see the right part of figure 5.
Assume now that h2(p) < h1(p) for 0 < p � min{yA, yB}. Since yl(x2(p)) and

yl(x1(p)) are solutions of the equations

dy

dp
= h2(p)

p − y
,

dy

dp
= h1(p)

p − y
,

respectively, with yl(x2(0)) = yl(x1(0)), then by statement (a) of lemma 7 we must have
yl(x2(p)) < yl(x1(p)) for 0 < p � min{yA, yB}. Similarly, by using remark 8 we must have
yu(x1(p)) < yu(x2(p)) for 0 < p � min{yA, yB}, and then the paths �1(p) and �2(p) do not
cross themselves, which is a contradiction. Hence, there must exist p̂ such that h1(p̂) = h2(p̂),

i.e. the system

p̂ = F(x1) = F(x2),
f (x1)

g(x1)
= f (x2)

g(x2)
,

must have a solution (x1, x2) = (s1, s2) with xA < s1 < 0 < s2 < xB, and theorem 2 is
proved. �

Proof of theorem 3. We start by assuming again the existence of a periodic orbit � contained
in the band a < x < b with all the geometric properties already established in the proof of
theorem 2. Furthermore, we assume that there is a unique value p̂ < min{yA, yB} such that
h2(p) < h1(p) for 0 < p < p̂, and h1(p) < h2(p) for p > p̂.

We claim first that yA > yB , as shown in figures 4 and 5. Now we start the proof of the
claim. By using statement (a) of lemma 7 in the interval [0, p̂] it follows that

yl(x2(p)) < yl(x1(p)) for 0 < p � p̂,

and analogously, by using remark 8 for the upper part, we have

yu(x1(p)) < yu(x2(p)) for 0 < p � p̂.

From the above inequalities we see that when the paths start to separate from the y-axis
the two arcs of path �2(p) are farther from the p-axis than the two arcs of path �1(p), see
figure 5. We already know from the proof of theorem 2 that both paths intersect and now
from the relative position of their beginning arcs at the y-axis we can ensure that their crossing
points appear in even-number multiplicities. In fact, due to the uniqueness of solutions of
system (10), we conclude now that there exists a unique value δ1 > p̂ such that

yl(x2(p)) < yl(x1(p)) for 0 < p < δ1,

yl(x2(p)) > yl(x1(p)) for δ1 < p < min{yA, yB}.
This lower crossing point at p = δ1 for yl(x1(p)) and yl(x2(p)) must be unique because
resorting to lemma 7(a) in the interval [δ1, min{yA, yB}] we have yl(x1(p)) < yl(x2(p)) in
such an interval. Similarly, by using remark 8 there is a unique value δ2 > p̂ such that for the
upper parts

yu(x1(p)) < yu(x2(p)) for 0 < p < δ2,

yu(x1(p)) > yu(x2(p)) for δ2 < p < min{yA, yB}.
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Therefore, as these two crossing points are only possible when yA > yB, if system (3) has a
periodic orbit then the condition yA > yB holds and our first claim is proved.

We now claim that the characteristic exponent of a periodic orbit of system (3) is negative;
that is, the periodic orbit is a stable limit cycle. Hence, the system has at most one periodic
orbit because we cannot have two consecutive stable periodic orbits. This should complete the
proof of theorem 3. Now we prove this second claim.

Let C = (xC, yC) be the point on the curve � for which xA < xC < 0 and
yC = F(xC) = F(xB) = yB > yl(xC), and let �̃ be the orbit of (3) passing through the
point C. Then the orbit �̃ meets the y-axis in the points K and L (see figure 5), where
yM < yK < 0 < yL < yN. The orbit �̃ is given by the graph of y = ỹl(x) on the arc CK and
by the graph of y = ỹu(x) on the arc LC. Since yM = yl(0) < yK = ỹl(0), lemma 7(a) in the
interval [0, p̂] implies

yl(x2(p)) < ỹl(x1(p)) for 0 � p � p̂. (27)

The previous inequality can be extended to ensure that

yl(x2(p)) < ỹl(x1(p)) for p̂ � p � yB, (28)

by using statement (b) of lemma 7 in the interval [p̂, yB] because we know that yl(x2(yB)) =
yB = yC = ỹl(x1(yB)) and that h1(p) < h2(p) for p > p̂.

By using remark 8 in an analogous way, we can show that

ỹu(x1(p)) < yu(x2(p)) for 0 < p < yB. (29)

Next we compute the characteristic exponent ρ of the periodic orbit �, i.e.

ρ =
∫

�

f (x(t)) dt,

where the line integral is described in the sense of the flow, that is counterclockwise.
The periodic orbit � = {(x(t), y(t))} intersects the line x = s2 at the points M2 and N2,

and the orbit �̃ = {(x̃(t), ỹ(t))} intersects the line x = s1 at the points K1 and L1, see figure 5.
We first compute the integral

I =
∫

MBN

f (x(t)) dt +
∫

LCK

f (x̃(t)) dt

along the arc MBN of the periodic orbit � and along the arc LCK of the path �̃.

To this end we compute the following integral

I1 =
∫

�:MM2

f (x(t)) dt +
∫

�̃:K1K

f (x̃(t)) dt =
∫ s2

0

f (x)

F (x) − yl(x)
dx +

∫ 0

s1

f (x)

F (x) − ỹl(x)
dx

=
∫ p̂

0

dp

p − yl (x2(p))
−

∫ p̂

0

dp

p − ỹl (x1(p))
=

∫ p̂

0

[
yl (x2(p)) − ỹl (x1(p))

]
dp

[p − yl (x2(p))]
[
p − ỹl (x1(p))

] ,

and from (27) we conclude that I1 < 0. Now we consider

I2 =
∫

�:M2B

f (x(t))dt +
∫

�̃:CK1

f (x̃(t))dt =
∫ xB

s2

f (x)

F (x)−yl(x)
dx+

∫ s1

xC

f (x)

F (x)− ỹl(x)
dx

=
∫ yB

p̂

dp

p−yl (x2(p))
−

∫ yB

p̂

dp

p− ỹl (x1(p))
= lim

η→yB

∫ η

p̂

[
yl (x2(p))− ỹl (x1(p))

]
dp

[p−yl (x2(p))]
[
p− ỹl (x1(p))

] ,

and from (28) we conclude that I2 < 0. We have

I3 =
∫

�:BN2

f (x(t))dt +
∫

�̃:L1C

f (x̃(t))dt =
∫ s2

xB

f (x)

F (x)−yu(x)
dx+

∫ xC

s1

f (x)

F (x)− ỹu(x)
dx

=
∫ yB

p̂

dp

yu(x2(p))−p
−

∫ yB

p̂

dp

ỹu(x1(p))−p
= lim

η→yB

∫ η

p̂

[
ỹu (x1(p))−yu(x2(p))

]
dp

[yu(x2(p))−p]
[
ỹu (x1(p))−p

] ,
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and from (29) we conclude that I3 < 0. We compute

I4 =
∫

�:N2N

f (x(t)) dt +
∫

�̃:LL1

f (x̃(t)) dt =
∫ 0

s2

f (x)

F (x) − yu(x)
dx +

∫ s1

0

f (x)

F (x) − ỹu(x)
dx

=
∫ p̂

0

dp

yu (x2(p)) − p
−

∫ p̂

0

dp

ỹu (x1(p)) − p
=

∫ p̂

0

[
ỹu (x1(p)) − yu (x2(p))

]
dp

[yu (x2(p)) − p]
[
ỹu (x1(p)) − p

] ,

and from (29) we conclude that I4 < 0. Hence I = I1 + I2 + I3 + I4 < 0 and

ρ = I +
∫

�:NAM

f (x(t)) dt −
∫

�̃:LCK

f (x̃(t)) dt.

We define

J1 =
∫

�:NA

f (x(t)) dt −
∫

�̃:LC

f (x̃(t)) dt, J2 =
∫

�:AM

f (x(t)) dt −
∫

�̃:CK

f (x̃(t)) dt,

so that ρ = I + J1 + J2. Now we will show that J1 < 0 and J2 < 0.

We compute the integral

J1 =
∫ yA

0

dp

p − yu (x1(p))
−

∫ yB

0

dp

p − ỹu (x1(p))
=

∫ yA

0

dp

p − yu (x1(p))
−

∫ yA

0

dp

p − ŷu (p)

=
∫ yA

0

yu (x1(p)) − ŷu (p)

[p − yu (x1(p))]
[
p − ŷu (p)

] dp,

where the function ŷu(p) is given by

ŷu (p) = µỹu

(
x1

(
µ−1p

))
and µ = yA

yB

> 1.

Clearly the function ŷu(p) is a solution of the differential equation

dy

dp
= ĥ1 (p)

p − y
,

where ĥ1(p) = µh1(µ
−1p).

The function α defined in (14), which can be written for x < 0 as

α(x1(p)) = g(x1(p))

f (x1(p))p
= h1(p)

p
,

is an increasing function of x1, and so a decreasing function of p. Then h1(µ
−1p) > µ−1h1(p),

so h1(p) < µh1(µ
−1p) = ĥ1(p) for p � 0. We recall that for y = yu(x1(p)) we knew that

dy

dp
= h1(p)

p − y
.

Now from the equality

ŷu(yA) = yA

yB

ỹu

(
x1

(
yB

yA

yA

))
= yA = yu (x1(yA))

and using statement (b) corresponding to remark 8 for h1 and ĥ1 in interval [0, yA] we get
yu(x1(p)) < ŷu(p) for 0 < p < yA and consequently J1 < 0.

Similarly we can show that J2 < 0, and the proof is complete. �



2138 J Llibre et al

7. Proof of theorems 4 and 5

First we prove theorem 4.

Proof of theorem 4. We first check the hypotheses H1–H3 in order to see that both theorems 2
and 3 can be applied.

Hypotheses H1 and H2 are immediate.
We will use the functions hi in checking hypothesis H3, and noting that xi(p) = p/ti for

i = 1, 2, we have

hi(p) = di

t2
i

p +
ai

ti
,

for i = 1, 2. Now hypothesis H3 is fulfilled whenever l2 = a2/t2 < l1 = a1/t1 or if
a2/t2 = a1/t1 when d2/t2

2 < d1/t2
1 . The equation h1(p) = h2(p) becomes equivalent to(

d1

t2
1

− d2

t2
2

)
p = a2

t2
− a1

t1
, (30)

which has a unique positive solution only if(
d1

t2
1

− d2

t2
2

) (
a2

t2
− a1

t1

)
> 0.

Now statement (a) of theorem 4 is a direct consequence of theorems 2 and 3.
Statement (b) can be shown by using statement (a) applied to the system{

ẋ = (−t2)x − y,

ẏ = d2x + (−a2),
if x � 0,

{
ẋ = (−t1)x − y,

ẏ = d1x + (−a1),
if x > 0,

which corresponds to systems (16) after the change in variable (x, y, τ ) → (−x, y, −τ).
Regarding statement (c), it is obvious that equation (30) has no solutions different from

zero when d1/t
2
1 − d2/t

2
2 �= 0 and the first assertion then comes from theorem 2. In the

remaining case we have h1(p) = h2(p) for all p and the conclusion on having a centre comes
from the application of theorem 11.3 in [14] to system (25). This completes the proof of
theorem 4. �

Starting from system (25) corresponding to system (16), when both dynamics are of focus
type (stable for x < 0, unstable for x > 0) it is possible to globally define a Poincaré return
map by introducing a transversal section to the flow. For that we select the negative y-axis
and define P : (0, ∞) → (0, ∞) which maps the coordinate y > 0 of the point (0, −y) into
the vertical coordinate P(y) of the point (0, −P(y)), where both points are the initial and the
final points, respectively, of one orbit that gives a complete counterclockwise turn around the
origin. For more details on the definition of this Poincaré map see proof of lemma 9. The
explicit computation of this map P should solve the problem of determining the exact number
of periodic orbits; however, this is not possible in general. The following result will be needed
later.

Lemma 9. Under the assumptions of theorem 5 the derivative of the Poincaré map P satisfies

lim
y→∞

dP

dy
= eπ(κ2−κ1),

where for i = 1, 2,

κi = 1√
4di

t2
i

− 1

.
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–y –y

P2(y)

p p

y = p y = py = –p

ε1

ε2

–P (y) = –P –1
1 (P2(y)) –P (y)

Figure 6. Building the Poincaré map near the origin by using the half-return maps P1 and P2.

Proof. To work in a more compact way we choose the folded plane, that is systems (22),
namely,

dp

dτ
= p − y,

dy

dτ
= di

t2
i

p +
ai

ti
,

for p � 0, and we define

ωi =
√

di

t2
i

− 1

4
, pe

i = −aiti

di

,

for i = 1, 2. Integrating both linear systems taking as initial point (0, −y), we have(
pi(τ ) − pe

i

yi(τ ) − ye
i

)
= exp

(τ

2

)
Ci(τ )

(
0 − pe

i

−y − ye
i

)
,

where ye
i = pe

i , and

Ci(τ ) =




cos(ωiτ ) +
sin(ωiτ )

2ωi

− sin(ωiτ )

ωi

di sin(ωiτ )

t2
i ωi

cos(ωiτ ) − sin(ωiτ )

2ωi


 .

After one half-turn around the origin following these solutions (pi(τ ), yi(τ )), we will arrive
at the positive part of the y-axis for certain values τi such that pi(τi) = 0 with 0 < ωiτi < π ,
see figure 6. The corresponding values of yi(τi) allow us to define the half-return maps

Pi : (0, ∞) → (0, ∞) with Pi(y) = yi(τi) and pi(τi) = 0 with 0 < ωiτi < π,

for i = 1, 2. Now the return map P(y) of system (25) corresponding to system (16) can be
recovered by taking P(y) = P −1

1 (P2(y)).
As shown in [9] for the continuous case, the study of such half-return Poincaré maps is

not possible explicitly and must be done in a parametric way. Thus the notation θi = ωiτi and
κi = 1/(2ωi) for i = 1, 2, the map Pi is determined by the equation

eκiθi




cos θi + κi sin θi −2κi sin θi

1 + κ2
i

2κi

sin θi cos θi − κi sin θi




( −pe
i

−y − pe
i

)
=

( −pe
i

Pi(y) − pe
i ,

)
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and it is parametrically described for each value of θi ∈ (0, π) as follows,

y = −pe
i

e−κiθi − cos θi + κi sin θi

2κi sin θi

,

Pi(y) = −pe
i

eκiθi − cos θi − κi sin θi

2κi sin θi

,

for i = 1, 2. Hence a straightforward computation now shows that for the derivatives we also
have the parametric representation

dPi

dy
(θi) = 1 − eκiθi (cos θi − κi sin θi)

1 − e−κiθi (cos θi + κi sin θi)
= e2κiθi

y

Pi(y)
,

so that

lim
y→∞

dPi(y)

dy
= lim

θi→π−

1 − eκiθi (cos θi − κi sin θi)

1 − e−κiθi (cos θi + κi sin θi)
= 1 + eκiπ

1 + e−κiπ
= eκiπ .

We can conclude by the chain rule and the inverse function theorem that

lim
y→∞

dP(y)

dy
= lim

y→∞
dP −1

1 (P2(y))

dy
= 1

eκ1π
eκ2π = eπ(κ2−κ1),

and the lemma follows. �
This last result can also be obtained by resorting to the techniques followed in [17].
We finish by giving the proof of theorem 5. For that we first show another technical result.

Lemma 10. Hypothesis H3 implies that the origin is an unstable topological focus if l2 > 0.

Proof. We will show that when y > 0 is sufficiently small the Poincaré map introduced in
this section satisfies P(y) > y. Taking a point (εi, εi) on the line y = p sufficiently near the
origin, we know that for the orbit passing through this point

dpi

dy
= 0,

d2pi

dy2
= − 1

hi(εi)
,

and then the corresponding orbits can be approximated by

pi(y) = εi − 1

2hi(εi)
(y − εi)

2 + O(y − εi)
3,

which cuts the y-axis at the points

y±
i ≈ ±

√
2hi(εi)εi + εi ≈ ±

√
2liεi + εi .

Note that for εi sufficiently small we have that y−
i < 0.

We choose ε1 and ε2 for the system with i = 1, 2 in such a way that the two quadratic
approximations for the orbits coincide in the positive y-axis, namely,

ε1 +
√

2h1(ε1)ε1 = ε2 +
√

2h2(ε2)ε2. (31)

From remark 8, and considering only the part of the orbits contained in the region y > p, we
can assure that ε1 < ε2, see figure 6. Now taking y = −y−

2 we can make the approximation
P(y) ≈ −y−

1 so that

P(y) − y ≈ −(ε1 −
√

2h1(ε1)ε1) + ε2 −
√

2h2(ε2)ε2 = 2(ε2 − ε1) > 0,

where we have taken into account the equality (31). This implies that the origin is an unstable
topological focus, see figure 6. �
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Proof of theorem 5. Reasoning as in the proof of theorem 4 we need only show statement (a).
From lemma 10 we know that the origin is unstable and in particular that for the Poincaré

map P in this section we have P(y) > y for y > 0 and sufficiently small.
The assumptions assure that d2/t

2
2 > d1/t

2
1 , and using that the function 1/

√
4x − 1 is

decreasing for x > 1/4 we see that κ2 − κ1 < 0. Therefore, from lemma 9 we have

L = lim
y→∞

dP

dy
= eπ(κ2−κ1) < 1.

We will now claim that there exists y∗ > 0 with P(y∗) < y∗ so that from the intermediate
value theorem we deduce the existence of a periodic orbit. Then the conclusion of the theorem
follows from theorem 3.

Effectively we can assure that there exists a certain value ȳ such that for y � ȳ we have

dP

dy
<

1 + L

2
= L̄ < 1.

If P(ȳ) < ȳ we are done. Otherwise taking y∗ > ȳ and invoking the mean value theorem we
have

P(y∗) − P(ȳ) < L̄(y∗ − ȳ),

which implies that

P(y∗) − y∗ < P(ȳ) − L̄ȳ − (1 − L̄)y∗,

which is clearly negative if y∗ is big enough and the claim is true. �

Acknowledgments

The first author is partially supported by a MEC/FEDER grant number MTM2005-06098-
C02-01 and by a CICYT grant number 2005SGR 00550. The second and third authors are
partially supported by a MEC/FEDER grant number MTM2006-00847. EP acknowledges
the hospitality and support from Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain,
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