14 research outputs found

    Peptidyl-prolyl cis/trans isomerase Pin1 interacts with hepatitis B virus core particle, but not with HBc protein, to promote HBV replication

    Get PDF
    Here, we demonstrate that the peptidyl-prolyl cis/trans isomerase Pin1 interacts noncovalently with the hepatitis B virus (HBV) core particle through phosphorylated serine/threonine-proline (pS/TP) motifs in the carboxyl-terminal domain (CTD) but not with particle-defective, dimer-positive mutants of HBc. This suggests that neither dimers nor monomers of HBc are Pin1-binding partners. The 162TP, 164SP, and 172SP motifs within the HBc CTD are important for the Pin1/core particle interaction. Although Pin1 dissociated from core particle upon heat treatment, it was detected as an opened-up core particle, demonstrating that Pin1 binds both to the outside and the inside of the core particle. Although the amino-terminal domain S/TP motifs of HBc are not involved in the interaction, 49SP contributes to core particle stability, and 128TP might be involved in core particle assembly, as shown by the decreased core particle level of S49A mutant through repeated freeze and thaw and low-level assembly of the T128A mutant, respectively. Overexpression of Pin1 increased core particle stability through their interactions, HBV DNA synthesis, and virion secretion without concomitant increases in HBV RNA levels, indicating that Pin1 may be involved in core particle assembly and maturation, thereby promoting the later stages of the HBV life cycle. By contrast, parvulin inhibitors and PIN1 knockdown reduced HBV replication. Since more Pin1 proteins bound to immature core particles than to mature core particles, the interaction appears to depend on the stage of virus replication. Taken together, the data suggest that physical association between Pin1 and phosphorylated core particles may induce structural alterations through isomerization by Pin1, induce dephosphorylation by unidentified host phosphatases, and promote completion of virus life cycle

    How can we achieve a sustainable nuclear fuel cycle?

    Get PDF
    Dealing with spent nuclear fuel is key if nuclear fission is to be used more widely going forward. Nuclear power is close to carbon neutral, but spent nuclear fuel has a storage lifetime of ~300,000 years. Reprocessing spent nuclear fuel is carried out on large scale using the PUREX “Plutonium Uranium Reduction and Extraction” process. The spent nuclear fuel is reduced to 15% of its original weight and the separated uranium and plutonium reused as “Mixed Oxide Fuel”. In the civil sector, this was carried out by the UK at Sellafield (now curtailed) and continues in France at La Hague. A plant in Rokashamura in Japan has been mothballed after the Fukushima accident. The residual waste must be stored for ~9,000 years with most of the remaining radiotoxicity due to traces of the minor actinides, neptunium, americium and curium, constituting just 0.1% of the original spent fuel. Separation of these minor actinides from the chemically very similar lanthanides (rare earths) in the last 15% of waste remaining after PUREX is the key step for future reprocessing. If separated, the minor actinides can be used as fuel in the next generation of nuclear reactors and converted into benign products, but lanthanides will cause the fission process to shut down if introduced into the reactor pile as they absorb neutrons efficiently. Removing the minor actinides from post PUREX waste will mean that the final residue need only be stored for 300 years. The highly challenging separation of the chemically very similar minor actinides from the lanthanides has been achieved using nitrogen-bearing organic ligands developed at Reading University. This can lead to significantly improved handling of spent nuclear fuels and means that waste nuclear fuel need not be a long-term storage liability but a source of yet more clean power

    Laboratory information management system for COVID-19 non-clinical efficacy trial data

    Get PDF
    Background : As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. Results : In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. Conclusions : This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.This research was supported by the National research foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020M3A9I2109027 and 2021M3H9A1030260)

    Association between Micronutrient Intake and Breast Cancer Risk According to Body Mass Index in South Korean Adult Women: A Cohort Study

    No full text
    This study investigated the association between micronutrient intake and breast cancer risk in South Korean adult women. This association was stratified according to body mass index (BMI) categories. Data from the Korean Genome and Epidemiology Study (KoGES) and the Health Examinee Study were analyzed. Altogether, 63,337 individuals (aged ≥40 years) completed the baseline and first follow-up surveys; 40,432 women without a history of cancer at baseline were included in this study. The association between micronutrient intake and breast cancer was determined by estimating the hazard ratio (HR) and 95% confidence interval (CI) using the Cox proportional hazard regression model. A stratified analysis by BMI (2 and ≥25 kg/m2) was performed. The an analysis of 15 micronutrients and breast cancer risk revealed that none of the micronutrients were associated with breast cancer risk after adjusting for covariates. In obese women, the risk of breast cancer was significantly reduced in the group that consumed vitamin C more than the recommended level (HR = 0.54, 95% CI: 0.31–0.93) and vitamin B6 levels above the recommended level (HR = 0.48, 95% CI: 0.25–0.89). In obese women, exceeding the recommended daily intake levels of vitamin C and vitamin B6 was associated with a lower risk of breast cancer. However, other micronutrients were not associated with breast cancer risk in these women

    Comparison of the pathogenesis of SARS-CoV-2 infection in K18-hACE2 mouse and Syrian golden hamster models

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extrapulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using preclinical models
    corecore