39 research outputs found

    Reactive Mechanism of Cognitive Control System

    Get PDF
    The prefrontal cortex (PFC) is thought to modulate the neural network state in favor of the processing of task-relevant sensory information prior to the presentation of sensory stimuli. However, this proactive control mechanism cannot always optimize the network state because of intrinsic fluctuation of neural activity upon arrival of sensory information. In the present study, we have investigated an additional control mechanism, in which the control process to regulate the behavior is adjusted to the trial-by-trial fluctuation in neural representations of sensory information. We asked normal human subjects to perform a variant of the Stroop task. Using functional magnetic resonance imaging, we isolated cognitive conflict at a sensory processing stage on a single-trial basis by calculating the difference in activation between task-relevant and task-irrelevant sensory areas. Activation in the dorsolateral PFC (DLPFC) covaried with the neural estimate of sensory conflict only on incongruent trials. Also, the coupling between the DLPFC and anterior cingulate cortex (ACC) was tighter on high-sensory conflict trials with fast response. The results suggest that although detection of sensory conflict is achieved by the DLPFC, online behavioral adjustment is achieved by interactive mechanisms between the DLPFC and AC

    Stimulus-Dependent Adjustment of Reward Prediction Error in the Midbrain

    Get PDF
    Previous reports have described that neural activities in midbrain dopamine areas are sensitive to unexpected reward delivery and omission. These activities are correlated with reward prediction error in reinforcement learning models, the difference between predicted reward values and the obtained reward outcome. These findings suggest that the reward prediction error signal in the brain updates reward prediction through stimulus–reward experiences. It remains unknown, however, how sensory processing of reward-predicting stimuli contributes to the computation of reward prediction error. To elucidate this issue, we examined the relation between stimulus discriminability of the reward-predicting stimuli and the reward prediction error signal in the brain using functional magnetic resonance imaging (fMRI). Before main experiments, subjects learned an association between the orientation of a perceptually salient (high-contrast) Gabor patch and a juice reward. The subjects were then presented with lower-contrast Gabor patch stimuli to predict a reward. We calculated the correlation between fMRI signals and reward prediction error in two reinforcement learning models: a model including the modulation of reward prediction by stimulus discriminability and a model excluding this modulation. Results showed that fMRI signals in the midbrain are more highly correlated with reward prediction error in the model that includes stimulus discriminability than in the model that excludes stimulus discriminability. No regions showed higher correlation with the model that excludes stimulus discriminability. Moreover, results show that the difference in correlation between the two models was significant from the first session of the experiment, suggesting that the reward computation in the midbrain was modulated based on stimulus discriminability before learning a new contingency between perceptually ambiguous stimuli and a reward. These results suggest that the human reward system can incorporate the level of the stimulus discriminability flexibly into reward computations by modulating previously acquired reward values for a typical stimulus

    Performance Report for the Center for Sciences towards Symbiosis among Human, Machine, and Data

    Get PDF
    ヒューマン・マシン・データ共生科学研究センターは、我が国が目指すべき新しい未来社会の姿として提唱されているSociety 5.0(各種情報技術と人間行動を統合した人間中心の社会)を視野に、人間と情報環境との調和的な共生の実現に向けた基盤研究を推進することを目的とする。特に、神経科学、データ工学、スポーツ科学の研究手法を基盤とした分野横断的な共同研究を組織し、脳生体信号を情報環境に活用するブレイン・マシン・インタフェース(Brain–Machine Interface; BMI)のための基盤研究と、人間の運動や健康データの人工知能(Artificial Intelligence; AI)分析をソーシャルネットワーク上で応用する研究を、並行して進める。具体的な研究テーマとして、1)脳活動および各種生体信号に基づく情報環境の実現に向けた基盤研究、2)Health・Social データのAI 分析および社会的応用に関する研究、に取り組む。本稿では、令和4 年度の研究の成果をテーマごとにまとめて報告する。departmental bulletin pape

    Cooperative Transport between NukFEG and NukH in Immunity against the Lantibiotic Nukacin ISK-1 Produced by Staphylococcus warneri ISK-1▿

    No full text
    Nukacin ISK-1 is a lantibiotic produced by Staphylococcus warneri ISK-1. Previous studies have reported that the self-protection system of the nukacin ISK-1 producer involves the cooperative function of the ABC transporter NukFEG and the lantibiotic-binding immunity protein NukH. In this study, the cooperative mechanism between NukFEG and NukH was characterized by using fluorescein-4-isothiocyanate (FITC)-labeled nukacin ISK-1 (FITC-nuk) to clarify the localization of nukacin ISK-1 in the immunity process. Lactococcus lactis recombinants expressing nukFEGH, nukFEG, or nukH showed immunity against FITC-nuk, suggesting that FITC-nuk was recognized by the self-protection system against nukacin ISK-1. Analysis of the interaction between FITC-nuk and energy-deprived cells of the L. lactis recombinants showed that FITC-nuk specifically bound to cells expressing nukH. The interaction between FITC-nuk and nukH-expressing cells was inhibited by the addition of unlabeled nukacin ISK-1 and its derivatives with deletions of the N-terminal tail region, but not by the addition of a synthesized N-terminal tail region. This suggests that the NukH protein recognizes the C-terminal ring region of nukacin ISK-1. The addition of glucose to nukFEGH-expressing cells treated with FITC-nuk resulted in a time-dependent decrease in fluorescence intensity, indicating that FITC-nuk was transported from the cell membrane by the NukFEG protein. These results revealed that after being captured by NukH in an energy-independent manner, nukacin ISK-1 was transported to the extracellular space by NukFEG in an energy-dependent manner

    Size-dependent growth tactics of a partially migratory fish before migration

    Get PDF
    In many migratory species, smaller migrants suffer higher mortality rates during the risky migration. To minimize the size-selective mortality, migrants with smaller body sizes would need to accelerate growth rates or delay migration timing to attain a large enough body size prior to migration. To test these predictions, we investigated size-dependent patterns of growth rates and migration timing of juvenile masu salmon (Oncorhynchus masou) before their oceanic migration. We tracked uniquely marked individuals in a study population consisted of oceanic migrants and river-dwelling residents using mark-recapture surveys and PIT-tag antenna-reader system. Data supported our predictions about size-dependent growth rates and migration timing. For approximately 6 months before outmigration (i.e., between the decision of migration and the start of migration), eventual migrants grew more than residents if their initial size was smaller, but such a difference in growth rate diminished for fish with larger initial sizes. In addition, smaller eventual migrants delayed the timing of outmigration compared to larger individuals, to attain a larger body size in the river prior to migration. These results suggest that size-selective mortality during migration has shaped size-dependent patterns of the pre-migration growth in migratory masu salmon. Size-conditional changes in growth rate and duration of pre-migration period may be an adaptive tactic for the migratory animals

    Determination of the InvE Binding Site Required for Expression of IpaB of the Shigella sonnei Virulence Plasmid: Involvement of a ParB BoxA-Like Sequence

    No full text
    The InvE protein positively regulates the expression of virulence genes ipaBCD in Shigella sonnei. The InvE has significant homology with ParB of plasmid P1, which is known as a plasmid partitioning factor with DNA binding ability. Although the DNA binding activity of InvE has been predicted, it is not known whether the DNA binding activity is necessary for type III secretion system-associated gene expression. In this study, we determined the transcription start site of the icsB-ipaBCD operon (ipa operon) and constructed a series of deletions of the icsB promoter region in the Escherichia coli K-12 background. The deletion study revealed that an 86-bp region upstream of the icsB transcription start site was essential for expression of the ipa operon, where the ParB binding motif (ParB BoxA-like sequence) was observed. Purified glutathione S-transferase-InvE fusion protein bound directly to the −93 to −54 region (designating the icsB transcription start site as nucleotide +1) containing the ParB BoxA-like sequence. These results indicated that InvE bound directly to the promoter region

    Functional Significance of the E Loop, a Novel Motif Conserved in the Lantibiotic Immunity ATP-Binding Cassette Transport Systems▿ †

    No full text
    Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains
    corecore