146 research outputs found

    Experimental and Numerical Analysis of Rock Burst Tendency and Crack Development Characteristics of Tianhu Granite

    Get PDF
    Rock burst is a serious nonlinear dynamic geological hazard in underground engineering construction. In this paper, a true triaxial unloading rock burst experiment and numerical simulation are carried out on Tianhu granite to investigate the rock burst tendency and crack development characteristics of surrounding rock after excavation. The experiment and numerical simulation process monitored the rock burst stress path to determine the rock burst stress. According to the evolution law of the frequency and amplitude of rock burst acoustic emission monitoring, the shape characteristics of rock burst fragments are analyzed. The rock burst numerical simulation analysis is carried out by the PFC software, and the temporal and spatial evolution law of cracks is obtained. The research results show that the laboratory experiment and numerical simulation of Tianhu granite have rock burst strengths of 163.4 MPa and 161 MPa, respectively, and the average rock burst stress ratio is 8.38, that is, the Tianhu granite has a low rock burst tendency. During the rock burst, the development of tensile cracks will produce flaky debris, and the development of shear cracks will produce lumpy debris. Rock burst will happen when the crack growth rate to be exceeded the unloading crack growth rate; therefore, it can be used as a precursor signal for the occurrence of rock burst

    Effect of density and total weight on flow depth, velocity, and stresses in loess debris flows

    Get PDF
    Debris flows that involve loess material produce important damage around the world. However, the kinematics of such processes are poorly understood. To better understand these kinematics, we used a flume to measure the kinematics of debris flows with different mixture densities and weights. We used sensors to measure pore fluid pressure and total normal stress. We measured flow patterns, velocities, and depths using a high-speed camera and laser range finder to identify the temporal evolution of the flow behavior and the corresponding peaks. We constructed fitting functions for the relationships between the maximum values of the experimental parameters. The hydrographs of the debris flows could be divided into four phases: increase to a first minor peak, a subsequent smooth increase to a second peak, fluctuation until a third major peak, and a final continuous decrease. The flow depth, velocity, total normal stress, and pore fluid pressure were strongly related to the mixture density and total mixture weight. We defined the corresponding relationships between the flow parameters and mixture kinematics. Linear and exponential relationships described the maximum flow depth and the mixture weight and density, respectively. The flow velocity was linearly related to the weight and density. The pore fluid pressure and total normal stress were linearly related to the weight, but logarithmically related to the density. The regression goodness of fit for all functions was >0.93. Therefore, these functions are accurate and could be used to predict the consequences of loess debris flows. Our results provide an improved understanding of the effects of mixture density and weight on the kinematics of debris flows in loess areas, and can help landscape managers prevent and design improved engineering solutions.Peer ReviewedPostprint (published version

    Zika Virus Non-structural Protein 4A Blocks the RLR-MAVS Signaling

    Get PDF
    Flaviviruses have evolved complex mechanisms to evade the mammalian host immune systems including the RIG-I (retinoic acid-inducible gene I) like receptor (RLR) signaling. Zika virus (ZIKV) is a re-emerging flavivirus that is associated with severe neonatal microcephaly and adult Guillain-Barre syndrome. However, the molecular mechanisms underlying ZIKV pathogenesis remain poorly defined. Here we report that ZIKV non-structural protein 4A (NS4A) impairs the RLR-mitochondrial antiviral-signaling protein (MAVS) interaction and subsequent induction of antiviral immune responses. In human trophoblasts, both RIG-I and melanoma differentiation-associated protein 5 (MDA5) contribute to type I interferon (IFN) induction and control ZIKV replication. Type I IFN induction by ZIKV is almost completely abolished in MAVS(-/-) cells. NS4A represses RLR-, but not Toll-like receptor-mediated immune responses. NS4A specifically binds the N-terminal caspase activation and recruitment domain (CARD) of MAVS and thus blocks its accessibility by RLRs. Our study provides in-depth understanding of the molecular mechanisms of immune evasion by ZIKV and its pathogenesis

    UBXN3B Positively Regulates STING-Mediated Antiviral Immune Responses

    Get PDF
    The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b(-/-), like Sting(-/-) mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b(+/+) littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b(-/-) primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses

    Zika Virus Non-structural Protein 4A Blocks the RLR-MAVS Signaling

    Get PDF
    Flaviviruses have evolved complex mechanisms to evade the mammalian host immune systems including the RIG-I (retinoic acid-inducible gene I) like receptor (RLR) signaling. Zika virus (ZIKV) is a re-emerging flavivirus that is associated with severe neonatal microcephaly and adult Guillain-Barre syndrome. However, the molecular mechanisms underlying ZIKV pathogenesis remain poorly defined. Here we report that ZIKV non-structural protein 4A (NS4A) impairs the RLR-mitochondrial antiviral-signaling protein (MAVS) interaction and subsequent induction of antiviral immune responses. In human trophoblasts, both RIG-I and melanoma differentiation-associated protein 5 (MDA5) contribute to type I interferon (IFN) induction and control ZIKV replication. Type I IFN induction by ZIKV is almost completely abolished in MAVS-/- cells. NS4A represses RLR-, but not Toll-like receptor-mediated immune responses. NS4A specifically binds the N-terminal caspase activation and recruitment domain (CARD) of MAVS and thus blocks its accessibility by RLRs. Our study provides in-depth understanding of the molecular mechanisms of immune evasion by ZIKV and its pathogenesis

    Relation between land cover and landslide susceptibility in Val d'Aran, Pyrenees (Spain): historical aspects, present situation and forward prediction

    Get PDF
    The effects of land use and land cover (LULC) dynamics on landslide susceptibility are not fully understood. This study evaluates the influence of LULC on landslide susceptibility and assesses the historic and future LULC changes in a high mountain region. A detailed inventory map showing the distribution of landslides was prepared based on the 2013 episode in Val d'Aran, Pyrenees (Spain). This inventory showed that LULC clearly affected landslide susceptibility. Both the number of landslides and the landslide density triggered in grassland and meadow was highest (52% and 2.0 landslides/km2). In contrast, the landslide density in areas covered by forest and shrubs was much lower (15% and 0.4 landslides/km2, and 23% and 1.7 landslides/km2, respectively). Historical changes of LULC between 1946 and 2013 were determined by comparing aerial photographs. The results indicated that the forest and shrub areas increased by 68 and 65%, respectively; whereas grassland and scree areas decreased by 33 and 52%. Urban area also increased by 532%, especially between 1990 and 2001. Future LULC was predicted until 2097 using TerrSet software. The results showed that the forest area and urban area increased by 57 and 43%, severally; while shrubs, grassland and scree area decreased by 28, 46 and 78%, respectively. Heuristic and deterministic models were applied to create susceptibility maps, which classified the study area into four susceptibility degrees from very low to high. The maps were validated by the 2013 landslide dataset and showed satisfactory results using receiver operating characteristics curves and density graph method. Then, susceptibility maps until 2097 were calculated by the heuristic model and results revealed that landslide susceptibility will decrease by 48% for high-susceptible areas. In contrast, the areas of very-low susceptibility degree will increase 95%, while medium and low-susceptible areas will be more or less constant. This study only includes the effect of future LULC changes on the landslide susceptibility and does not analyze the future impacts of climate changes and the variation of rainfall conditions. Nevertheless, the results may be used as support for land management guidelines to reduce the risk of slope instabilities.Postprint (author's final draft

    Kinect Sensor-Based Long-Distance Hand Gesture Recognition and Fingertip Detection with Depth Information

    No full text
    Gesture recognition is an important part of human-robot interaction. In order to achieve fast and stable gesture recognition in real time without distance restrictions, this paper presents an improved threshold segmentation method. The improved method combines the depth information and color information of a target scene with hand position by the spatial hierarchical scanning method; the ROI in the scene is thus extracted by the local neighbor method. In this way, the hand can be identified quickly and accurately in complex scenes and different distances. Furthermore, the convex hull detection algorithm is used to identify the positioning of fingertips in ROI, so that the fingertips can be identified and located accurately. The experimental results show that the hand position can be obtained quickly and accurately in the complex background by using the improved method, the real-time recognition distance interval can be reached by 0.5 m to 2.0 m, and the fingertip detection rates can be reached 98.5% in average. Moreover, the gesture recognition rates are more than 96% by the convex hull detection algorithm. It can be thus concluded that the proposed method achieves good performance of hand detection and positioning at different distances
    • …
    corecore