8 research outputs found

    Preparation and anti-triple-negative breast cancer cell effect of a nanoparticle for the codelivery of paclitaxel and gemcitabine

    No full text
    Abstract Amphiphilic polymers (HA-ANI) were prepared by grafting hyaluronic acid (HA) and 6-(2-nitroimidazole)hexylamine (ANI) and then self-assemble in water to form nanoparticles (NPs) that could be loaded with paclitaxel (PTX) and gemcitabine (GEM) by dialysis. Infrared spectroscopy and 1H-NMR indicated the successful synthesis of HA-ANI. Three different ratios of NPs were prepared by adjusting the ratios of hydrophilic and hydrophobic materials, and the particle size decreased as the ratio of hydrophilic materials increased. When HA:ANI = 2.0:1, the nanoparticles had the smallest size distribution, good stability and near spherical shape and had high drug loading and encapsulation rates. In vitro release experiments revealed that NADPH could accelerate the drug release from NPs. Cellular uptake rate reached 86.50% at 6 h. The toxic effect of dual drug-loaded nanoparticles (P/G NPs) on MDA-MB-231 cells at 48 h was stronger than that of the free drug. The AO/EB double-staining assay revealed that a large number of late apoptotic cells appeared in the P/G NPs group, and the degree of cell damage was significantly stronger than that of the free drug group. In the cell migration assay, the 24 h-cell migration rate of the P/G NPs group was 5.99%, which was much lower than that of the free group (13.87% and 17.00%). In conclusion, MDA-MB-231 cells could effectively take up P/G NPs, while the introduction of the nano-codelivery system could significantly enhance the toxicity of the drug to MDA-MB-231 cells as well as the migration inhibition effect

    The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-β pathway

    No full text
    Abstract Glioma is the most aggressive and common malignant neoplasms in human brain tumors. Numerous studies have showed that glioma stem cells (GSCs)drive the malignant progression of gliomas. Recent studies have revealed that circRNAs can maintain stemness and promote malignant progression of glioma stem cells. We used bioinformatics analysis to identify circRNAs and potential RNA-binding proteins (RBPs) in glioma. qRT-PCR, western blotting, RNA FISH, RNA pull-down, RNA immunoprecipitation assay, ChIP, immunohistochemistry, and immunofluorescence methods were used to quantified the expression of circNCAPG, U2AF65, RREB1 and TGF-β1, and the underlying mechanisms between them. MTS, EDU, neurosphere formation, limiting dilution neurosphere formation and transwell assays examined the proliferation and invasive capability of GSCs, respectively. We identified a novel circRNA named circNCAPG was overexpressed and indicated the poor prognosis in glioma patients. Upregulating circNCAPG promoted the malignant progression of GSCs. RNA binding protein U2AF65 could stabilize circNCAPG by direct binding. Mechanically, circNCAPG interacted with and stabilized RREB1, as well as stimulated RREB1 nuclear translocation to activate TGF-β1 signaling pathway. Furthermore, RREB1 transcriptionally upregulated U2AF65 expression to improve the stability of circNCAPG in GSCs, which established a feedback loop involving U2AF65, circNCAPG and RREB1. Since circRNA is more stable than mRNA and can execute its function continuously, targeting circNCAPG in glioma may be a novel promising therapeutic

    DNA Assembly of Plasmonic Nanostructures Enables <i>In Vivo</i> SERS-Based MicroRNA Detection and Tumor Photoacoustic Imaging

    No full text
    Controllable self-assembly of the DNA-linked gold nanoparticle (AuNP) architecture for in vivo biomedical applications remains a key challenge. Here, we describe the use of the programmed DNA tetrahedral structure to control the assembly of three different types of AuNPs (∼20, 10, and 5 nm) by organizing them into defined positioning and arrangement. A DNA-assembled “core–satellite” architecture is built by DNA sequencing where satellite AuNPs (10 and 5 nm) surround a central core AuNP (20 nm). The density and arrangement of the AuNP satellites around the core AuNP were controlled by tuning the size and amount of the DNA tetrahedron functionalized on the core AuNPs, resulting in strong electromagnetic field enhancement derived from hybridized plasmonic coupling effects. By conjugating with the Raman molecule, strong surface-enhanced Raman scattering photoacoustic imaging signals could be generated, which were able to image microRNA-21 and tumor tissues in vivo. These results provided an efficient strategy to build precision plasmonic superstructures in plasmonic-based bioanalysis and imaging

    A genetic mechanism for convergent skin lightening during recent human evolution

    No full text
    Skin lightening among Eurasians is thought to have been a convergence occurring independently in Europe and East Asia as an adaptation to high latitude environments. Among Europeans, several genes responsible for such lightening have been found, but the information available for East Asians is much more limited. Here, a genome-wide comparison between dark-skinned Africans and Austro-Asiatic speaking aborigines and light-skinned northern Han Chinese identified the pigmentation gene OCA2, showing unusually deep allelic divergence between these groups. An amino acid substitution (His615Arg) of OCA2 prevalent in most East Asian populations—but absent in Africans and Europeans—was significantly associated with skin lightening among northern Han Chinese. Further transgenic and targeted gene modification analyses of zebrafish and mouse both exhibited the phenotypic effect of the OCA2 variant manifesting decreased melanin production. These results indicate that OCA2 plays an important role in the convergent skin lightening of East Asians during recent human evolution
    corecore