218 research outputs found

    How Does Learning Lead to Innovativeness, Internationalization and Success of Entrepreneurial Ventures? – Evidence from China’s High Technology Industry

    Get PDF
    In this dissertation research project, we try to unravel the black box of learning by entrepreneurial ventures with two fundamental learning dimensions: learning extensity and learning ambidexterity. Learning extensity represents how extensively the entrepreneurial ventures engage in market learning, technology learning, social-network learning and cross-market learning. Learning ambidexterity represents the balance between exploitative and exploratory learning. Through an online survey, we give entrepreneurial ventures a comprehensive exam on their learning with quantified measurement. Concerning the determinants of learning characteristics, we explore a variety of task-related prior experience of the core entrepreneurial team. We found that education and work experience are the main influencers of exploitative learning; while technology experience increases exploratory learning. Interested in the consequences of learning, we examine the relationship between learning and outcome variables including product innovativeness, the degree of internationalization, customer reception and financial performance of the entrepreneurial venture. We found that market learning is the most important type of learning for this group of high technology entrepreneurial ventures, with significant positive influence on product innovativeness, customer reception, and financial performance. Technology learning enhances product innovativeness; social network learning improves customer reception; cross-market learning leads to the accelerated internationalization of the venture. We also found that higher degree of internationalization and better customer reception are associated with better financial performance. Our empirical results show that exploitative learning contributes to financial performance through enhanced customer reception; and exploratory learning contributes to financial performance through accelerated internationalization. Exploratory learning also increases product innovativeness of the entrepreneurial venture. But product innovativeness does not have a direct relationship with financial performance of the entrepreneurial venture

    Treating Heavy Oil Wastewater for Beneficial Use by Integrated Technology of Bio-Oxidation and RO

    Get PDF
    Heavy oil exploitation wastewater is characterized by its high concentration of emulsified oil, high salinity, high temperature and complex chemical components. This paper discuss a successful pilot-scale demonstration application of a unique technology integrating heat exchanger, gas floatation, biological contact oxygen, filtration, ultra-filtration, reverse osmosis at Chenzhuang oilfield. The scale of the process was about 360 m3/d, and the performance of the treatment process, the effectiveness of the technology for removal of oil and for controlling RO membranes fouling, and the economic effect are also discussed. Operation results show that the biological contact oxidation--ultra filtration process can reduce the oil contents to less than 0.5 mg/L and TDS to less than 3. The conductivity of RO effluent is below 456 μS·cm-1, the treated water can meet the required standard for steam-injected boiler, and it can also be used to prepare polymer solution for viscosity keeping.Key words: Heavy oil wastewater; Biological contact oxygen; RO; Steam boiler; Polymer solutio

    A high performance surface acoustic wave visible light sensor using novel materials: Bi2S3 nanobelts

    Get PDF
    Low dimensional Bi2S3 materials are excellent for use in photodetectors with excellent stability and fast response time. In this work, we developed a visible light sensor with good performance based on surface acoustic wave (SAW) devices using Bi2S3 nanobelts as the sensing materials. The SAW delay-line sensor was fabricated on ST-cut quartz with a designed wavelength of 15.8 microns using conventional photolithography techniques. The measured center frequency was 200.02 MHz. The Bi2S3 nanobelts prepared by a facile hydrothermal process were deposited onto SAW sensors by spin-coating. Under irradiation of 625 nm visible light with a power intensity of 170 μW cm−2, the sensor showed a fast and large response with a frequency upshift of 7 kHz within 1 s. The upshift of the frequency of the SAW device is mainly attributed to the mass loading effect caused by the desorption of oxygen from the Bi2S3 nanobelts under visible light radiation

    A high performance surface acoustic wave visible light sensor using novel materials: Bi2S3 nanobelts

    Get PDF
    Low dimensional Bi2S3 materials are excellent for use in photodetectors with excellent stability and fast response time. In this work, we developed a visible light sensor with good performance based on surface acoustic wave (SAW) devices using Bi2S3 nanobelts as the sensing materials. The SAW delay-line sensor was fabricated on ST-cut quartz with a designed wavelength of 15.8 microns using conventional photolithography techniques. The measured center frequency was 200.02 MHz. The Bi2S3 nanobelts prepared by a facile hydrothermal process were deposited onto SAW sensors by spin-coating. Under irradiation of 625 nm visible light with a power intensity of 170 μW cm−2, the sensor showed a fast and large response with a frequency upshift of 7 kHz within 1 s. The upshift of the frequency of the SAW device is mainly attributed to the mass loading effect caused by the desorption of oxygen from the Bi2S3 nanobelts under visible light radiation

    Cross-Architecture Knowledge Distillation

    Full text link
    Transformer attracts much attention because of its ability to learn global relations and superior performance. In order to achieve higher performance, it is natural to distill complementary knowledge from Transformer to convolutional neural network (CNN). However, most existing knowledge distillation methods only consider homologous-architecture distillation, such as distilling knowledge from CNN to CNN. They may not be suitable when applying to cross-architecture scenarios, such as from Transformer to CNN. To deal with this problem, a novel cross-architecture knowledge distillation method is proposed. Specifically, instead of directly mimicking output/intermediate features of the teacher, a partially cross attention projector and a group-wise linear projector are introduced to align the student features with the teacher's in two projected feature spaces. And a multi-view robust training scheme is further presented to improve the robustness and stability of the framework. Extensive experiments show that the proposed method outperforms 14 state-of-the-arts on both small-scale and large-scale datasets

    Fatigue equation of cement-treated aggregate base materials under a true stress ratio

    Get PDF
    The objective of this article is to establish a fatigue equation based on the true stress ratio for cement-treated aggregate base materials. The true stress ratio herein means the ratio of the stress and the true strength of the cement-treated aggregate base materials related to loading rates and curing times. The unconfined compressive strength tests and compressive resilience modulus tests were carried out under various loading rates and curing times of 3, 7, 14, 28, 60, 90 days, respectively. According to the test results, the relationship between the unconfined compressive strength (a mix design parameter in China) and the compressive resilience modulus (a structural design parameter and the construction quality control parameter in China) of the cement-treated aggregate base material with different curing times was established. However, it was found that the strengths varied with the loading rates, which is not reflected in the existing fatigue equations. Therefore, it is questionable to obtain the stress ratio of fatigue tests with a fixed strength value obtained from the standard strength test where the loading rate is fixed (in China, the fixed loading rate is 1 mm/min for cement-treated aggregate base materials). Thus, in this paper, the four-point bending strength (i.e., flexural strength) test was carried out at different loading rates to resolve such deficiencies. Based on the strength test results at different loading rates, the true stress ratio of the fatigue test corresponding to the fatigue loading rate can be calculated. Then the four-point bending fatigue test was conducted to establish an improved fatigue equation characterized by the true stress ratio. The results show that the patterns of variation for unconfined compressive strength increasing with the curing time were similar to that of the compressive resilience modulus. The fatigue equation curve based on the true stress ratio can be extended to the strength failure point of (1, 1), where both the true stress ratio and the fatigue life value are one. The internal relationship between the strength failure and the fatigue failure was unified. This article provides a theoretical method and basis for unifying the mix design parameters and the construction quality control parameters

    Agriculture intensifies soil moisture decline in Northern China

    Get PDF
    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of −0.011 to −0.015 m3 m−3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system
    • …
    corecore