6 research outputs found

    Synthesis and Comparative Study of Polyether-<i>b</i>-polybutadiene-<i>b</i>-polyether Triblock Copolymers for Use as Polyurethanes

    No full text
    In this paper, the effects of HTPBs with different main-chain microstructures on their triblock copolymers and polyurethane properties were investigated. Three polyether-modified HTPB triblock copolymers were successfully synthesized via a cationic ring-opening copolymerization reaction using three HTPBs with different microstructures prepared via three different polymerization methods as the macromolecular chain transfer agents and tetrahydrofuran (THF) and propylene oxide (PO) as the copolymerization monomers. Finally, the corresponding polyurethane elastomers were prepared using the three triblock copolymers as soft segments and toluene diisocyanate (TDI) as hard segments. The results of an analysis of the triblock copolymers showed that the triblock copolymers had lower viscosity and glass transition temperature (Tg) values as the HTPB 1,2 structure content decreased, although the effect on the thermal decomposition temperature was not significant. An analysis of the polyurethane elastomers revealed that as the content of the 1,2 structure in HTPB increased, its corresponding polyurethane elastomers showed a gradual increase in breaking strength and a gradual decrease in elongation at break. In addition, PU-1 had stronger crystallization properties compared to PU-2 and PU-3. However, the differences in the microstructures of the HTPBs did not seem to have much effect on the surface properties of the polyurethane elastomers

    Molecular Mechanism of Erlotinib Resistance in Epidermal Growth Factor Receptor 
Mutant Non-small cell Lung Cancer Cell Line H1650

    No full text
    Background and objective Epidermal growth factor receptor (EGFR) overexpression and mutations were existed in more than 40% of the lung cancer, and it’s the one of molecular targets in clinical treatment. But the EGFR tyrosine kinase inhibitors (TKI)-resistance is becoming a challenging clinical problem as following the application of EGFR-TKIs, Gefitinib or Erlotinib. However, the mechanistic explanation for resistance in the some cases is still lacking. Here we researched the resistance mechanism of H1650 cells. Methods Using real-time RT-PCR to analyze the EGFR mRNA expression level in EGFR wild-type non-small cell lung cancer (NSCLC) cells; MTT analysis detected the cytotoxicity for NSCLC cells to Erlotinib; Western blot analysis examined the mutant situations and the downstream signaling protein phosphorylation level in EGFR-mutant NSCLC cells with the treatment of Erlotinib or/and PI3K inhibitor, LY294002. Results In the EGFR wild-type NSCLC cells, the expression level of EGFR mRNA varied dramatically and all the cells showed resistant to Erlotinib; In the EGFR-mutant cells, HCC827 and H1650 (the same activating-mutation type), HCC827 cells were Erlotinib-sensitive as well as H1650 demonstrated primary relative resistance. Western blot analysis showed the loss of PTEN and the p-AKT level was not inhibited with the treatment of Erlotinib or/and LY294002 in H1650 cells, while HCC827 cells were no PTEN loss and definitively decrease of p-AKT level. Conclusion EGFR wild-type NSCLC cells were resistant to Erlotinib no matter of how EGFR mRNA expression level. EGFR-activating mutations correlated with responses to Erlotinib. The PTEN loss and activation of AKT signaling pathway contributed to Erlotinib resistance in EGFR-mutant NSCLC cell line H1650

    On-surface manipulation of atom substitution between cobalt phthalocyanine and the Cu(111) substrate

    No full text
    On-surface fabrication of controllable nanostructures is an appealing topic in the field of molecular electronics. Herein, the adsorption of cobalt phthalocyanine (CoPc) on a Cu(111) surface is investigated utilizing a combination of photoelectron spectroscopy (PES) and density functional theory (DFT). Interestingly, the scenario of atom exchange is discovered at the interface at room temperature (RT), namely the substitution of the cobalt atom in CoPc by a surface Cu adatom. Moreover, thermal annealing enhances the substitution process considerably which is demonstrated to be complete at about 573 K. As revealed by DFT calculations, the driving force for the observed interface transmetalation is most probably provided by the initial strong molecular-substrate interaction between Co atoms and the Cu(111) surface, the external thermodynamic energy gained from thermal sublimation and thermal annealing, and the tendency to form Co–Cu alloy at the interface. While CoPc has been successfully utilized in electrocatalysts for fuel cell applications and CuPc is commonly used as a leading material in organic solar cells, this report of interface transmetalation from CoPc to CuPc in a solid state environment may offer an encouraging approach towards the artificial engineering of organometallic nanostructures and related properties for surface catalysts, molecular electronics and so on
    corecore