1,819 research outputs found

    Quantum Phase Transitions in the U(5)-O(6) Large N limit

    Full text link
    The U(5)-O(6) transitional behavior of the Interacting Boson Model in the large N limit is revisited. Some low-lying energy levels, overlaps of the ground state wavefunctions, B(E2) transition rate for the decay of the first excited energy level to the ground state, and the order parameters are calculated for different total numbers of bosons. The results show that critical behaviors of these quantities are greatly enhanced with increasing of the total number of bosons N, especially fractional occupation probability for d bosons in the ground state, the difference between the expectation value of n_d in the first excited 0^+ state and the ground state, and another quantity related to the isomer shift behave similarly in both the O(6)-U(5) large N and U(5)-SU(3) phase transitions.Comment: 7 Pages LaTeX, 3 figure

    The Chiral Model of Sakai-Sugimoto at Finite Baryon Density

    Full text link
    In the context of holographic QCD we analyze Sakai-Sugimoto's chiral model at finite baryon density and zero temperature. The baryon number density is introduced through compact D4 wrapping S^4 at the tip of D8-\bar{D8}. Each baryon acts as a chiral point-like source distributed uniformly over R^3, and leads a non-vanishing U(1)_V potential on the brane. For fixed baryon charge density n_B we analyze the bulk energy density and pressure using the canonical formalism. The baryonic matter with point like sources is always in the spontaneously broken phase of chiral symmetry, whatever the density. The point-like nature of the sources and large N_c cause the matter to be repulsive as all baryon interactions are omega mediated. Through the induced DBI action on D8-\bar{D8}, we study the effects of the fixed baryon charge density n_B on the pion and vector meson masses and couplings. Issues related to vector dominance in matter in the context of holographic QCD are also discussed.Comment: V3: 39 pages, 16 figures, minor corrections, version to appear in JHEP. V2: references added, typos correcte

    Ferromagnetic transition in a double-exchange system

    Full text link
    We study ferromagnetic transition in three-dimensional double-exchange model. The influence of strong spin fluctuations on conduction electrons is described in coherent potential approximation. In the framework of thermodynamic approach we construct for the system "electrons (in a disordered spin configuration) + spins" the Landau functional, from the analysis of which critical temperature of ferromagnetic transition is calculated.Comment: 4 pages, 1 eps figure, LaTeX2e, RevTeX. References added, text change

    Generation of Long-Lived Isomeric States via Bremsstrahlung Irradiation

    Get PDF
    A method to generate long-lived isomeric states effectively for Mossbauer applications is reported. We demonstrate that this method is better and easier to provide highly sensitive Mossbauer effect of long-lived isomers (>1ms) such as 103Rh. Excitation of (gamma,gamma) process by synchrotron radiation is painful due mainly to their limited linewidth. Instead,(gamma,gamma') process of bremsstrahlung excitation is applied to create these long-lived isomers. Isomers of 45Sc, 107Ag, 109Ag, and 103Rh have been generated from this method. Among them, 103Rh is the only one that we have obtained the gravitational effect at room temperature.Comment: ICAME 05 conference repor

    Role of the E2g phonon in the superconductivity of MgB2: a Raman scattering study

    Full text link
    Temperature dependent Raman scattering studies in polycrystalline MgB2(10<T<300 K)reveal that the E2g phonon does not experience any self energy renormalization effect across the superconducting critical temperature Tc ~ 40 K. In contrast, most of the current theoretical models rely on the role of the E2g phonon in the electron-phonon coupling mechanism of superconductivity in MgB2. According to these models, a hardening of 12% is expected below Tc at the Gamma point of the Brillouim zone. In the presence of our results, those models must be reviewed. The analysis of the temperature dependence of the E2g phonon frequency yields to a isobaric Gruneisen parameter of -1.2< gama(E2g)< 0.2, smaller than the value of 3.9 obtained from isothermal Raman experiments under pressure. It is suggested that this apparent disagreement can be explained in terms of pressure induced changes of the topology of the Fermi surface. Finally we notice that the phonon linewidth presents the expected two-phonon anharmonic decay as a function of T and no anomalous temperature dependence of the linewidth is observed near Tc.Comment: Published in Solid State Comm. 125, 499 (2003

    Interaction of quasilocal harmonic modes and boson peak in glasses

    Full text link
    The direct proportionality relation between the boson peak maximum in glasses, ωb\omega_b, and the Ioffe-Regel crossover frequency for phonons, ωd\omega_d, is established. For several investigated materials ωb=(1.5±0.1)ωd\omega_b = (1.5\pm 0.1)\omega_d. At the frequency ωd\omega_d the mean free path of the phonons ll becomes equal to their wavelength because of strong resonant scattering on quasilocal harmonic oscillators. Above this frequency phonons cease to exist. We prove that the established correlation between ωb\omega_b and ωd\omega_d holds in the general case and is a direct consequence of bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur

    Moduli Dynamics of AdS_3 Strings

    Full text link
    We construct a general class of solutions for a classical string in AdS_3 spacetime. The construction is based on a Pohlmeyer type reduction, with the sinh-Gordon model providing the general N-soliton solutions. The corresponding exact spiky string configurations are then reconstructed through the inverse scattering method. It is shown that the string moduli are determined entirely by those of the solitons.Comment: 22 pages, no figures; references adde

    Spiral phase and phase separation of the double exchange model in the large-S limit

    Full text link
    The phase diagram of the double exchange model is studied in the large-S limit at zero temperature in two and three dimensions. We find that the spiral state has lower energy than the canted antiferromagnetic state in the region between the antiferromagnetic phase and the ferromagnetic phase. At small doping, the spiral phase is unstable against phase separation due to its negative compressibility. When the Hund coupling is small, the system separates into spiral regions and antiferromagnetic regions. When the Hund coupling is large, the spiral phase disappears completely and the system separates into ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure
    • …
    corecore