32 research outputs found

    Slice Isolation for 5G Transport Networks

    Get PDF
    Network slicing plays a key role in the 5G ecosystem for vertical industries to introduce new services. However, one widely-recognized challenge of network slicing is to provide traffic isolation and concurrently satisfy diverse performance requirements, e.g., bandwidth and latency. In this work, we showcase the capability to retain these two goals at the same time, via extending the 5Growth baseline architecture and designing a new data-plane pipeline, i.e., virtual queue, over the P4 switch. To demonstrate the effectiveness of our approach, a proof-of-concept is presented serving different service requests over a mixed data path, including P4 switches and Open vSwitches (OvSs)

    Opposite cannabis-cognition associations in psychotic patients depending on family history

    Get PDF
    The objective of this study is to investigate cognitive performance in a first-episode psychosis sample, when stratifying the interaction by cannabis use and familial or non-familial psychosis. Hierarchical-regression models were used to analyse this association in a sample of 268 first-episode psychosis patients and 237 controls. We found that cannabis use was associated with worse working memory, regardless of family history. However, cannabis use was clearly associated with worse cognitive performance in patients with no family history of psychosis, in cognitive domains including verbal memory, executive function and global cognitive index, whereas cannabis users with a family history of psychosis performed better in these domains. The main finding of the study is that there is an interaction between cannabis use and a family history of psychosis in the areas of verbal memory, executive function and global cognition: that is, cannabis use is associated with a better performance in patients with a family history of psychosis and a worse performance in those with no family history of psychosis. In order to confirm this hypothesis, future research should explore the actual expression of the endocannabinoid system in patients with and without a family history of psychosis

    Predictive simulations for plasma scenarios in the SMART tokamak

    Get PDF
    The SMall Aspect Ratio Tokamak (SMART) is a new spherical machine that is currently being constructed at the University of Seville (Mancini et al., 2021; Agredano-Torres et al., 2021). The operation of SMART will cover three different phases reaching an inductive plasma current (IP) of more than 500 kA, a toroidal magnetic field (BT) of 1 T and a pulse length of 500 ms (Mancini et al., 2021; Agredano-Torres et al., 2021). The main goal of the SMART tokamak is to study high plasma confinement regimes in a broad triangularity range (-0.5≤δ≤0.5) (Doyle et al., 2021; Doyle et al., 2021). While in phase 1 the ohmic heating alone is expected to provide enough power to access the H-mode, in phase 2 and phase 3 the access to the H-mode will be ensured by applying Neutral Beam Injection (NBI) as external heating system. The NBI will consist of one injector at 25 keV and 1 MW of power. The overall design of the NBI, including injection geometry, energy and power have been optimized using the ASCOT5 code (Hirvijoki et al., 2021). The SMART scenarios have been developed with the help of the free boundary equilibrium solver code FIESTA (Cunningham, 2013) coupled to the linear time independent, rigid plasma model RZIP (Lazarus et al., 1990) to calculate the target equilibria for all the different operational phases. To assess the feasibility of those scenarios, predictive modelling needs to be included to evaluate properly the evolution of the temperatures, density profiles for both electrons and ions. To this extent, the 1.5D transport code ASTRA (Pereverzev and Yushmanov, 2002) has been used including models for the ohmic current, bootstrap current and current driven by NBI. This contribution discusses the electron and ion density and temperature profiles obtained for various scenarios for phase 1 and 2 and presents the design study of the NBI.his work received funding from the Fondo Europeo de Desarollo Regional (FEDER) by the European Commission under grant agreement numbers IE17-5670 and US-15570. The authors gratefully acknowledge the financial support of the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 805162).Peer reviewe

    Angiocrine polyamine production regulates adiposity.

    Get PDF
    Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid β-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.We thank members of the Endothelial Pathobiology and Microenvironment Group for helpful discussions. We thank the CERCA Program/Generalitat de Catalunya and the Josep Carreras Foundation for institutional support. The research leading to these results has received funding from la Fundación BBVA (Ayuda Fundacion BBVA a Equipos de Investigación Científica 2019, PR19BIOMET0061) and from SAF2017-82072-ERC from Ministerio de Ciencia, Innovación y Universidades (MCIU) (Spain). The laboratory of M.G. is also supported by the research grants SAF2017-89116R-P (FEDER/EU) co-funded by European Regional Developmental Fund (ERDF), a Way to Build Europe and PID2020-116184RB-I00 from MCEI; by the Catalan Government through the project 2017-SGR; PTEN Research Foundation (BRR-17-001); La Caixa Foundation (HR19-00120 and HR21-00046); by la Asociación Española contra el Cancer-Grupos Traslacionales (GCTRA18006CARR, also to A.C.); European Foundation for the Study of Diabetes/Lilly research grant, also to M.C.); and by the People Programme (Marie Curie Actions; grant agreement 317250) of the European Union’s Seventh Framework Programme FP7/2007-2013 and the Marie Skłodowska-Curie (grant agreement 675392) of the European Union’s Horizon 2020 research. The laboratory of A.C. is supported by the Basque Department of Industry, Tourism and Trade (Elkartek) and the department of education (IKERTALDE IT1106-16), the MCIU (PID2019-108787RB-I00 (FEDER/ EU); Severo Ochoa Excellence Accreditation SEV-2016-0644; Excellence Networks SAF2016-81975-REDT), La Caixa Foundation (ID 100010434), under the agreement LCF/PR/HR17, the Vencer el Cancer foundation and the European Research Council (ERC) (consolidator grant 819242). CIBERONC was co-funded with FEDER funds and funded by Instituto de Salud Carlos III (ISCIII). The laboratory of M.C. is supported by the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 725004) and CERCA Programme/Generalitat de Catalunya (M.C.). The laboratory of D.S. is supported by research grants from MINECO (SAF2017- 83813-C3-1-R, also to L.H., cofounded by the ERDF), CIBEROBN (CB06/03/0001), Government of Catalonia (2017SGR278) and Fundació La Marató de TV3 (201627- 30). The laboratory of R.N. is supported by FEDER/Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación (RTI2018-099413-B-I00 and and RED2018-102379-T), Xunta de Galicia (2016-PG057 and 2020-PG015), ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement 810331), Fundación BBVA, Fundacion Atresmedia and CIBEROBN, which is an initiative of the ISCIII of Spain, which is supported by FEDER funds. The laboratory of J.A.V. is supported by research grants from MICINN (RTI2018-099250-B100) and by La Caixa Foundation (ID 100010434, LCF/PR/HR17/52150009). P.M.G.-R. is supported by ISCIII grant PI15/00701 cofinanced by the ERDF, A Way to Build Europe. Personal support was from Marie Curie ITN Actions (E.M.), Juan de la Cierva (IJCI-2015-23455, P.V.), CONICYT fellowship from Chile (S.Z.), Vetenskapsradet (Swedish Research Council, 2018-06591, L.G.) and NCI K99/R00 Pathway to Independence Award (K99CA245122, P. Castel).S

    Impact of previous tobacco use with or without cannabis on first psychotic experiences in patients with first-episode psychosis

    Get PDF
    Objective: There is high prevalence of cigarette smoking in individuals with first-episode psychosis (FEP) prior to psychosis onset. The purpose of the study was to determine the impact of previous tobacco use with or without cannabis on first psychotic experiences in FEP and the impact of this use on age of onset of symptoms, including prodromes. Methods: Retrospective analyses from the naturalistic, longitudinal, multicentre, “Phenotype-Genotype and Environmental Interaction. Application of a Predictive Model in First Psychotic Episodes (PEPs)” Study. The authors analysed sociodemographic/clinical data of 284 FEP patients and 231 matched healthy controls, and evaluated first psychotic experiences of patients using the Symptom Onset in Schizophrenia Inventory. Results: FEP patients had significantly higher prevalence of tobacco, cannabis, and cocaine use than controls. The FEP group with tobacco use only prior to onset (N = 56) had more sleep disturbances (42.9% vs 18.8%, P = 0.003) and lower prevalence of negative symptoms, specifically social withdrawal (33.9% vs 58%, P = 0.007) than FEP with no substance use (N = 70), as well as lower prevalence of ideas of reference (80.4% vs 92.4%, P = 0.015), perceptual abnormalities (46.4% vs 67.4%, P = 0.006), hallucinations (55.4% vs 71.5%, P = 0.029), and disorganised thinking (41.1% vs 61.1%, P = 0.010) than FEP group with previous tobacco and cannabis use (N = 144). FEP patients with cannabis and tobacco use had lower age at first prodromal or psychotic symptom (mean = 23.73 years [SD = 5.09]) versus those with tobacco use only (mean = 26.21 [SD = 4.80]) (P = 0.011). Conclusions: The use of tobacco alone was not related to earlier age of onset of a first psychotic experience, but the clinical profile of FEP patients is different depending on previous tobacco use with or without cannabis. © 2021 The Author

    Corneal Sensitivity and Dry Eye Symptoms in Patients with Keratoconus.

    Get PDF
    PURPOSE: To investigate corneal sensitivity to selective mechanical, chemical, and thermal stimulation and to evaluate their relation to dry eye symptoms in patients with keratoconus. METHODS: Corneal sensitivity to mechanical, chemical, and thermal thresholds were determined using a gas esthesiometer in 19 patients with keratoconus (KC group) and in 20 age-matched healthy subjects (control group). Tear film dynamics was assessed by Schirmer I test and by the non-invasive tear film breakup time (NI-BUT). All eyes were examined with a rotating Scheimpflug camera to assess keratoconus severity. RESULTS: KC patients had significatly decreased tear secretion and significantly higher ocular surface disease index (OSDI) scores compared to controls (5.3+/-2.2 vs. 13.2+/-2.0 mm and 26.8+/-15.8 vs. 8.1+/-2.3; p0.05). The mean threshold for selective mechanical (KC: 139.2+/-25.8 vs. control: 109.1+/-24.0 ml/min), chemical (KC: 39.4+/-3.9 vs. control: 35.2+/-1.9%CO2), heat (KC: 0.91+/-0.32 vs. control: 0.54+/-0.26 Delta degrees C) and cold (KC: 1.28+/-0.27 vs. control: 0.98+/-0.25 Delta degrees C) stimulation in the KC patients were significantly higher than in the control subjects (p0.05), whereas in the control subjects both mechanical (r = 0.52, p = 0.02), chemical (r = 0.47, p = 0.04), heat (r = 0.26, p = 0.04) and cold threshold (r = 0.40, p = 0.03) increased with age. In the KC group, neither corneal thickness nor tear flow, NI-BUT or OSDI correlated significantly with mechanical, chemical, heat or cold thresholds (p>0.05 for all variables). CONCLUSIONS: Corneal sensitivity to different types of stimuli is decreased in patients with keratoconus independently of age and disease severity. The reduction of the sensory input from corneal nerves may contribute to the onset of unpleasant sensations in these patients and might lead to the impaired tear film dynamics

    Overview of ASDEX upgrade results in view of ITER and DEMO

    Get PDF
    Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore