5,089 research outputs found

    Effect of self-healing additions on the development of mechanical strength of cement paste

    Get PDF
    Important research efforts have been recently focused on the development of self-healing cement composites. The healing mechanism, implemented within the material, must be automatically initiated as soon as the first signs of damage appear at the micro-scale. For doing so, two different additions have been developed to incorporate them simultaneously into the cementitious matrix: silica microcapsules containing an epoxy sealing compound (CAP) and nanosilica particles functionalized with amine groups (NS). As a first step to the development of a self-healing concrete with these two additions, their pozzolanic activity has been measured by an accelerated test. The high values of fixed lime obtained at 28 days (85% for CAP, 93% for NS and 88% for a mix of them) suggest that they are suitable for construction materials’ applications. Furthermore, the behaviour of the additions in an ordinary Portland cement paste with 20 wt.% of commercial micro-silica has been studied, considering the partial substitution of micro-silica by CAP, NS and their mix. High values of compressive strength (>60 MPa) have been obtained in all cases after 28 days of hydration. However, while the addition of CAP induces a reduction of the compressive strength of the 24% with respect to the reference material, the addition of NS gives rise to a slight enhancement of the strength (5%) due to a pozzolanic reaction confirmed by X-ray diffraction data. Finally, in the presence of both CAP and NS, the beneficial effect of the nanosilica is counteracted by the microcapsules and a reduction of 28% is obtained for the compressive strength

    Pre-exercise skin temperature evolution is not related with 100 m front crawl performance

    Get PDF
    [EN] During the transition between warm-up and competition there is a change in core, muscle and (eventually) skin temperature that may affect swimming performance. We have aimed to assess skin temperature evolution during transition phases of different durations before a typical front crawl effort and to investigate its relationship with performance. Following a standardized warm-up, nine adolescent male swimmers performed three maximal randomized 100 m maximum front crawl trials after 10, 20 and 45 min transition phases. Skin temperature, performance (time, stroke frequency, length and index, and propelling efficiency), heart rate, lactate and perceived effort were assessed. Data showed a skin temperature log increase over time (R2 > 0.96, p 0.05) for the studied transition phases. We have concluded that transitions longer than 10 min will not present thermal changes and that, within the physiologic limits studied, pre-exercise skin temperature does not influence swimming performance.SIMinisterio de Ciencia, Innovación y Universidades del Gobierno de Españ

    Preparation of Dipteran Larvae for Scanning Electron Microscopy with Special Reference to Myiasigen Dipteran Species

    Get PDF
    Although controversy exists concerning the role of chemical fixatives in scanning electron microscopy (SEM) studies of Dipteran larvae, we have observed that filtered 10% formaldehyde solution gives excellent results as a preservative. After immersing in vivo in formaldehyde, the larvae material is preserved for prolonged periods (up to 8 months), before examination with SEM. As a fixative, formaldehyde preserves the structure of the larval cuticle and produces no visible artifacts. Moreover, postfixation is not necessary. Due to pecularities of the way of life of Wohlfahrtia magnifica (principally the accumulations of necrotic tissue, purulent particles, and other types of substances that often adhere to the numerous spines of larvae), this species must be cleaned before examination by SEM. Manual cleaning with alternating bidistilled water and 0.9% saline solution proved to be a rapid, easy and inexpensive method that gave good results. Both lyophilization drying and critical point drying were used before sputtering the material. While lyophilization drying proved to be the most effective method for instars II and III, critical point drying was the best technique for study of specimens belonging to instar I. The optimum time for drying and conditions for lyophilization and sputter-coating with gold were determined experimentally. Samples were mounted on SEM stubs with double-sided adhesive and silver conductive paint. The method proposed is easy and effective for the SEM study of larvae myiasis-producing diptera

    Discrete-event simulation to reduce waiting time in accident and emergency departments: a case study in a district general clinic

    Get PDF
    Waiting time is a crucial performance metric in A&E departments. In this regard, longer waiting times are related to low patient satisfaction, high mortality rates and more severe physical health complications. To analyze patient flow in these departments, discrete-event simulation (DES) has been used; however, its application has not been extended to evaluate the impact of improvement strategies. Therefore, this paper aims to design and pretest operational strategies for better ED care delivery using DES. First, input data analysis is carried out. Afterward, the DES model is developed and validated to establish whether it is statistically comparable with the real-world. Then, performance indicators of the current system are computed and analyzed. Finally, improvement strategies are proposed and evaluated by simulation modelling and statistical tests. A case study of an A&E department from a district general clinic is presented to validate the proposed framework. In particular, we will validate the effectiveness of introducing a triage system (Scenario 3), a strategy that is not currently adopted by the clinic. Results demonstrate that waiting times could be meaningfully diminished based on the proposed approaches within this paper

    Transcriptome Metabolic Characterization of Tuber borchii SP1—A New Spanish Strain for In Vitro Studies of the Bianchetto Truffle

    Get PDF
    Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds

    The discovery of the most UV-Lya luminous star-forming galaxy: a young, dust- and metal-poor starburst with QSO-like luminosities

    Full text link
    We report the discovery of BOSS-EUVLG1 at z=2.469, by far the most luminous, almost un-obscured star-forming galaxy known at any redshift. First classified as a QSO within the Baryon Oscillation Spectroscopic Survey, follow-up observations with the Gran Telescopio Canarias reveal that its large luminosity, MUV = -24.40 and log(L_Lya/erg s-1) = 44.0, is due to an intense burst of star-formation, and not to an AGN or gravitational lensing. BOSS-EUVLG1 is a compact (reff = 1.2 kpc), young (4-5 Myr) starburst with a stellar mass log(M*/Msun) = 10.0 +/- 0.1 and a prodigious star formation rate of ~1000 Msun yr-1. However, it is metal- and dust-poor (12+log(O/H) = 8.13 +/- 0.19, E(B-V) = 0.07, log(LIR/LUV) < -1.2), indicating that we are witnessing the very early phase of an intense starburst that has had no time to enrich the ISM. BOSS-EUVLG1 might represent a short-lived (<100 Myrs), yet important phase of star-forming galaxies at high redshift that has been missed in previous surveys. Within a galaxy evolutionary scheme, BOSS-EUVLG1 could likely represent the very initial phases in the evolution of massive quiescent galaxies, even before the dusty star-forming phase.Comment: 6 pages, 3 figures, 1 table. Accepted for publication in MNRAS Letter

    The Complete Star Formation History of the Universe

    Full text link
    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how structure in the Universe forms and evolves. A picture has built up over recent years, piece-by-piece, by observing young stars in distant galaxies at different times in the past. These studies indicated that the stellar birthrate peaked some 8 billion years ago, and then declined by a factor of around ten to its present value. Here we report on a new study which obtains the complete star formation history by analysing the fossil record of the stellar populations of 96545 nearby galaxies. Broadly, our results support those derived from high-redshift galaxies elsewhere in the Universe. We find, however, that the peak of star formation was more recent - around 5 billion years ago. Our study also shows that the bigger the stellar mass of the galaxy, the earlier the stars were formed. This striking result indicates a very different formation history for high- and low-mass formation.Comment: Accepted by Nature. Press embargo until publishe

    A dynamic explanation for the origin of the western Mediterranean organic-rich layers

    Get PDF
    The eastern Mediterranean sapropels are among the most intensively investigated phenomena in the paleoceanographic record, but relatively little has been written regarding the origin of the equivalent of the sapropels in the western Mediterranean, the organic-rich layers (ORLs). ORLs are recognized as sediment layers containing enhanced total organic carbon that extend throughout the deep basins of the western Mediterranean and are associated with enhanced total barium concentration and a reduced diversity (dysoxic but not anoxic) benthic foraminiferal assemblage. Consequently, it has been suggested that ORLs represent periods of enhanced productivity coupled with reduced deep ventilation, presumably related to increased continental runoff, in close analogy to the sapropels. We demonstrate that despite their superficial similarity, the timing of the deposition of the most recent ORL in the Alboran Sea is different than that of the approximately coincident sapropel, indicating that there are important differences between their modes of formation. We go on to demonstrate, through physical arguments, that a likely explanation for the origin of the Alboran ORLs lies in the response of the western Mediterranean basin to a strong reduction in surface water density and a shoaling of the interface between intermediate and deep water during the deglacial period. Furthermore, we provide evidence that deep convection had already slowed by the time of Heinrich Event 1 and explore this event as a potential agent for preconditioning deep convection collapse. Important differences between Heinrich-like and deglacial-like influences are highlighted, giving new insights into the response of the western Mediterranean system to external forcing
    corecore