5,874 research outputs found

    Radical radiotherapy in epidermoid cancer in the orbitary region: ideal scheme of hypo-fractionation in times of COVID-19: a case report

    Get PDF
    There are adverse events in the patient's environment that impact on therapeutic decisions and become a medical challenge, as is currently the management of cancer patients with radiotherapy, particularly the elderly in times of a COVID-19 pandemic, due the high risk of infection and fatal complications from non-cancer causes. Here we present the case of an 84-year-old woman with voluminous squamous cell cancer in the left orbital region, which caused intense pain, stench, and persistent bleeding. And due to persistence and time, it impacted with deterioration in the patient’s quality of life. In the end, of hypo fractionated radiotherapy management as the only modality, it evolves with a complete clinical response and total palliation of initial symptoms. The reasons for the decision to manage radiotherapy and the excellent clinical results that reinforce the idea of personalized medicine and the importance of evaluating the biopsychosocial environment of the cancer patient will be discussed

    Improving graph-based detection of singular events for photochemical smog agents

    Full text link
    Recently, a set of graph-based tools have been introduced for the identification of singular events of O3, NO2 and temperature time series, as well as description of their dynamics. These are based on the use of the Visibility Graphs (VG). In this work, an improvement of the original approach is proposed, being called Upside-Down Visibility Graph (UDVG). It adds the possibility of investigating the singular lowest episodes, instead of the highest. Results confirm the applicability of the new method for describing the multifractal nature of the underlying O3, NO2, and temperature. Asymmetries in the NO2 degree distribution are observed, possibly due to the interaction with different chemicals. Furthermore, a comparison of VG and UDVG has been performed and the outcomes show that they describe opposite subsets of the time series (low and high values) as expected. The combination of the results from the two networks is proposed and evaluated, with the aim of obtaining all the information at once. It turns out to be a more complete tool for singularity detection in photochemical time series, which could be a valuable asset for future research.Comment: 35 pages, 7 figure

    Role of color doppler imaging in early diagnosis and prediction of progression in glaucoma

    Get PDF
    This longitudinal and prospective study analyzes the ability of orbital blood flow measured by color Doppler imaging (CDI) to predict glaucoma progression in patients with glaucoma risk factors. Patients with normal perimetry but having glaucoma risk factors and patients in the initial phase of glaucoma were prospectively included in the study and divided, after a five-year follow-up, into two groups: “Progression” and “No Progression” based on the changes in the Moorfields regression analysis (MRA) classification of Heidelberg retina tomograph (HRT). An orbital CDI was performed in all patients and the parameters obtained were correlated with changes in HRT. A logistic discrimination function (LDF) was calculated for ophthalmic artery (OA) and central retinal artery (CRA) parameters. Receiver operating characteristics curves (ROC) were used to assess the usefulness of LDFs to predict glaucomatous progression. A total of 71 eyes were included. End-diastolic velocity, time-averaged velocity, and resistive index in the OA and CRA were significantly different ( ) between the Progression and No Progression groups. The area under the ROC curves calculated for both LDFs was of 0.695 (OA) and 0.624 (CRA). More studies are needed to evaluate the ability of CDI to perform early diagnosis and to predict progression in glaucoma in eyes

    Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States

    Get PDF
    Particle pH is a critical but poorly constrained quantity that affects many aerosol processes and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 pH as a function of geographical location and altitude, focusing on the northeastern U.S., based on aircraft measurements from the Wintertime Investigation of Transport, Emissions, and Reactivity campaign (1 February to 15 March 2015). Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to observed partitioning of inorganic nitrate between the gas and particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic phase separations or nitrate measurement uncertainties associated with low concentrations (nitrate \u3c 1 µg m−3). Including refractory ions in the pH calculations did not improve model predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle pH for altitudes up to 5000 m ranged between −0.51 and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96, similar to those reported for the southeastern U.S. and eastern Mediterranean. This expansive aircraft data set is used to investigate causes in variability in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of temperatures (−21 to 19°C), RH (20 to 95%), inorganic gas, and particle concentrations and also provides further evidence that particles with low pH are ubiquitous

    High intensity interval training exercise-induced physiological changes and their potential influence on metabolic syndrome clinical biomarkers: a meta-analysis

    Get PDF
    Abstract: Background: Despite the current debate about the effects of high intensity interval training (HIIT), HIIT elicits big morpho-physiological benefit on Metabolic Syndrome (MetS) treatment. However, no review or meta-analysis has compared the effects of HIIT to non-exercising controls in MetS variables. The aim of this study was to determine through a systematic review, the effectiveness of HIIT on MetS clinical variables in adults. Methods: Studies had to be randomised controlled trials, lasting at least 3 weeks, and compare the effects of HIIT on at least one of the MetS clinical variables [fasting blood glucose (BG), high-density lipoprotein (HDL-C) triglyceride (TG), systolic (SBP) or diastolic blood pressure (DBP) and waist circumference (WC)] compared to a control group. The methodological quality of the studies selected was evaluated using the PEDro scale. Results: Ten articles fulfilled the selection criteria, with a mean quality score on the PEDro scale of 6.7. Compared with controls, HIIT groups showed significant and relevant reductions in BG (− 0.11 mmol/L), SBP (− 4.44 mmHg), DBP (− 3.60 mmHg), and WC (− 2.26 cm). Otherwise, a slight increase was observed in HDL-C (+ 0.02 mmol/L). HIIT did not produce any significant changes in TG (− 1.29 mmol/L). Conclusions: HIIT improves certain clinical aspects in people with MetS (BG, SBP, DBP and WC) compared to people with MetS who do not perform physical exercise. Plausible physiological changes of HIIT interventions might be related with large skeletal muscle mass implication, improvements in the vasomotor control, better baroreflex control, reduction of the total peripheral resistance, increases in excess post-exercise oxygen consumption, and changes in appetite and satiety mechanisms

    Comparative study of CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts in the CO-PROX reaction

    Get PDF
    CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts (6%wt Cu) were synthesized and tested in the preferential oxidation of CO in a H2-rich stream (CO-PROX). Nanocrystalline supports, CeO2 and solid solutions of modified CeO2 with zirconium and aluminum were prepared by a freeze-drying method. CuO was supported by incipient wetness impregnation and calcination at 400 C. All catalysts exhibit high activity in the CO-PROX reaction and selectivity to CO2 at low reaction temperature, being the catalyst supported on CeO2 the more active and stable. The influence of the presence of CO2 and H2O was also studied

    Potential benefits of melatonin in organ transplantation: a review

    Get PDF
    Organ transplantation is a useful therapeutic tool for patients with end-stage organ failure; however, graft rejection is a major obstacle in terms of a successful treatment. Rejection is usually a consequence of a complex immunological and nonimmunological antigen-independent cascade of events, including free radical-mediated ischemia-reperfusion injury (IRI). To reduce the frequency of this outcome, continuing improvements in the efficacy of antirejection drugs are a top priority to enhance the long-term survival of transplant recipients. Melatonin (N-acetyl-5-methoxytryptamine) is a powerful antioxidant and ant-inflammatory agent synthesized from the essential amino acid L-tryptophan; it is produced by the pineal gland as well as by many other organs including ovary, testes, bone marrow, gut, placenta, and liver. Melatonin has proven to be a potentially useful therapeutic tool in the reduction of graft rejection. Its benefits are based on its direct actions as a free radical scavenger as well as its indirect antioxidative actions in the stimulation of the cellular antioxidant defense system. Moreover, it has significant anti-inflammatory activity. Melatonin has been found to improve the beneficial effects of preservation fluids when they are enriched with the indoleamine. This article reviews the experimental evidence that melatonin is useful in reducing graft failure, especially in cardiac, bone, otolaryngology, ovarian, testicular, lung, pancreas, kidney, and liver transplantation

    Production performance, nutrient digestibility, and milk composition of dairy ewes supplemented with crushed sunflower seeds and sunflower seed silage in corn silage-based diets

    Get PDF
    This study determined production performance, nutrient digestibility, and milk composition of dairy ewes supplemented with crushed sunflower seeds (Helianthus annuus) and sunflower seed silage in corn silage-based diets. Six ewes were grouped in a double 3 × 3 Latin square design with three periods of 21 days. All treatments were based on ad libitum corn silage. Control diet was based on alfalfa hay (333 g/kg DM), sorghum grain (253 g/kg DM), triticale grain (200 g/kg DM), soybean meal (167 g /kg DM), and vitamin and mineral premix (47 g/kg DM). Sunflower seeds (SF) and sunflower seed silage (SFS) treatments consisted of alfalfa hay (333 g/kg DM), sorghum grain (267 g/kg DM), triticale grain (100 g/kg DM), soybean meal (167 g /kg DM), SF or SFS (87 g/kg DM) and vitamin and mineral premix (47 g/kg DM). Compared to control, SF and SFS increased intake and digestibility of fiber components, such as neutral detergent fiber (NDF) and acid detergent fiber (ADF). Body weight, nitrogen balance, milk yield, milk fat yield, milk protein yield, lactose yield and milk urea N were similar between treatments. Overall, results demonstrated that crushed sunflower seeds and ensiled seeds do not change significantly productive parameters of dairy sheep
    corecore