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An integrated data analysis system based on Bayesian inference has been developed

for the TJ-II stellarator. It reconstructs the electron density profile at a single time

point, using data from interferometry, reflectometry, Thomson Scattering, and the

Helium beam, while providing a detailed error analysis. In this work, we present a

novel analysis of the ambiguity inherent in profile reconstruction from reflectometry,

and show how the Integrated Data Analysis approach elegantly resolves it. Several

examples of the application of the technique are provided, in both low-density dis-

charges with and without electrode biasing, and in high-density discharges with an

(L-H) confinement transition.

PACS numbers: 07.05.Kf,52.25.Os,52.25.Vy,52.55.Hc

1



I. INTRODUCTION

The goal of this work is to perform an integrated analysis of the data obtained using

various diagnostics based on Bayesian inference1, applied to profile reconstruction at TJ-II.

TJ-II is a flexible Heliac (R = 1.5 m, a < 0.2 m, B0 < 1 T) with 4 periods and 32

toroidal field coils2. Heating is performed by the Electron Cyclotron Resonant Heating

(ECRH) system (consisting of two gyrotrons and beam lines with an injected power of up

to about 300 kW each); and Neutral Beam Injection (NBI), consisting of two injectors (co

and counter with respect to the toroidal magnetic field Bφ, with an injected power of up to

about 500 kW port-through each).

TJ-II is an extremely well-diagnosed machine. Some of the available diagnostics are: in-

terferometry, Thomson Scattering (TS), reflectometry, Helium beam, Lithium beam, Heavy

Ion Beam Probe (HIBP), Electron Cyclotron Emission (ECE), Soft X-Ray Emission (SXR),

etc. Up to now, no systematic attempt has been made to combine the information delivered

by several of these diagnostics in order to maximize knowledge about plasma profiles. Evi-

dently, such improved knowledge is important for, e.g., transport studies and the calculation

of plasma performance parameters, with appropriate error bars.

In this initial work, we will limit ourselves to the analysis of density profiles (ne), leaving

temperature profiles (Te), combined density and temperature profiles, effective charge (Zeff),

electric potential (φ), etc., to future work. The temporal evolution of the profiles is not

considered here; we limit ourselves to reconstructing an instantaneous profile at a specified

time point. In Section II, we provide a general outline of the approach followed. In Section

III, we describe how the various diagnostic systems are modeled and what assumptions

are made. In Section IV, we explain the structure of the program for reconstruction of

the density profile, and how the error analysis is performed. In Section V, we provide a few

examples of profile reconstruction at TJ-II. Finally, in Section VI, we draw some conclusions

concerning the method, its advantages and strengths, and discuss possible future extensions

of this work.
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II. INTEGRATED ANALYSIS OF PROFILE MEASUREMENTS

The experimental documentation of fusion plasmas often requires a consistent analysis

of data from different sources. For example, in this work we will discuss the reconstruction

of the spatial profile of the electron density using the reflectometry, Thomson scattering,

interferometry, and Helium beam diagnostics at TJ-II.

In the conventional approach, the combined analysis of profile measurements begins with

the individual analyses of the concerned diagnostics. In a next step, the resulting data

are transformed from laboratory coordinates to magnetic flux surface coordinates, based on

equilibrium calculations. Finally, a model function is fitted to the analyzed data. Although

conceptually straight-forward, this conventional approach suffers from deficiencies which

may lead to unwanted ambiguities in the combined analysis. Examples of such issues arise

from parametric entanglements, e.g., one of the diagnostic units could depend on the input

from another measurement. Another example, although not of primary concern for the

case discussed here, is the dependence of the aforementioned coordinate transformation on

the plasma pressure – while the latter is an object of the measurement itself3. Moreover,

beyond physical interdependencies, systematic effects affecting individual diagnostics, or a

priori inaccessible parameters such as offsets, further complicate the situation.

Bayesian analysis offers the possibility to integrate the analysis of heterogeneous measure-

ment data and underlying physical models in a single framework, sometimes called Integrated

Data Analysis (IDA)4. IDA has been applied to the combination of data from different ex-

periments at Wendelstein 7-AS5,6, ASDEX Upgrade (for a recent review cf.7), and JET8. In

this framework, rather than analyzing all measurements separately and combining the re-

sults, a single model profile is used to fit all data simultaneously while explicitly formulating

underlying assumptions, thus clarifying the limitations of the analysis (that would otherwise

remain hidden). The approach is based on probability distributions, and allows a thorough

and complete analysis of error propagation9). Bayes’ theorem describes the formal essence

of the implementation of IDA:

P (~α|~d, ~σ, I) =
L(~d|~α, ~σ, I)π(~α|I)∫
L(~d|~α, ~σ, I)π(~α|I)d~α

(1)

The result P is a probability distribution of the parameters ~α. We note that the parameter

vector ~α includes the parameters describing the density profile (~αne) as well as other param-
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eters (e.g., diagnostic calibration factors), denoted by ~α′: ~α = {~αne , ~α
′}. P is a conditional

probability distribution; it quantifies the probability to find a result ~α given measured data

~d, the measurement uncertainties ~σ and context information I summarizing all assumptions

(e.g., the functional form of the fit function) entering the combined analysis. Eq. (1) tells us

that the result of a measurement also depends on the knowledge (better: ignorance) of the

parameters ~α prior to the measurement, i.e., without data ~d: this knowledge is encoded in

the probability distribution π(~α|I). The data enter in the so-called likelihood L(~d|~α, ~σ, I),

specifying the probability of obtaining a measurement given the model parameters. The

normalization of P is not relevant for the problem of determining the most probable values

and uncertainties of the parameters.

The key feature of the approach that allows ‘fitting’ a joint model for the density profile

(encoded by ~αne) to all data is now reflected by the explicit calculus of the likelihood: since

L should measure the degree of compliance of the actual data with given parameters, it

is necessary to determine the misfit of the modeled data ~d0 with regard to the measured

data ~d. In order to weight individual data points with respect to each other, the likelihood

typically involves the measurement error of the data ~σ. The modeled data ~d0 are determined

by the forward function ~f which can be regarded as a deterministic model for a synthetic

diagnostic

~d0 = ~f(~α) = ~f(~αne , ~α
′) (2)

involving the (specific) diagnostic model parameters ~α′.

To combine different measurements, each diagnostic must ultimately be represented by

its own forward model. The crux of the integrated analysis is the use of the same physical

model parameters (~αne) for all measurements. This is the formal difference to the conven-

tional approach for which individual diagnostics produce individual estimates of a physical

quantity. It is this feature of the conventional approach which gives rise to practical difficul-

ties, particularly when the data suffer from inconsistencies such as systematic shifts in the

coordinate mapping.

Since the elaboration of the forward model forces one to formulate a model linking the

physics underlying a measurement to the resulting observation, this forward model must

necessarily contain all physics relevant to the measurement. E.g., in the case of interferom-

etry, the model for the integration along the line of sight must include the transformation
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from an assumed density distribution (specified via ~αne) on magnetic surfaces to laboratory

coordinates. In other words, the formulation of the forward function (or the measurement

model) is a way to consistently incorporate physical information into the analysis of data.

Regarding the integrated analysis of the electron density profile at TJ-II, note that the fact

that the data from different diagnostics are taken independently implies that the likelihood

can be factorized. Labelling each diagnostic by a subindex j, one has:

L(~d|~α, ~σ, I) = ΠjLj(~dj|~αne , ~α
′
j, ~σj, I) (3)

The same applies to π:

π(~α|I) = π(~αne|I)× Πjπj(~α
′
j|I) (4)

This formulation has a practical and highly relevant side-effect: Eqs. 3 and 4 allow a

formal and quantifiable model for ‘systematic errors’: a parameter describing a systematic

effect α′s can be introduced but its uncertainty must be quantified a priori by π(α′s|I). This

allows assessing effects known to exist and to include their influence on the analysis result,

even though their direct precise determination is impossible.

To find the best estimates and uncertainties of any parameter αi, one needs to determine

the marginal probability distribution P (αi|~d, ~σ, I) as a final step. The marginal distribution

can be determined by the marginalization rule of probability theory:

P (αi|~d, ~σ, I) =

∫
P (~α|~d, ~σ, I)dα1 · · · dαi−1dαi+1 · · · dαn (5)

This marginalization rule can be considered a generalized error propagation law, since the

marginalization propagates the uncertainties of the marginalized model parameters αj, j 6= i

to the marginal result.

III. FORWARD MODELLING AND ERROR ESTIMATES

In this Section, we will discuss various facts and assumptions underlying the modelling

of the relevant measurements, and in particular their effect on the final error in the results.

More details concerning the various measurement devices discussed can be found in the cited

references.
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A. Magnetic geometry

The forward modelling of diagnostics in a magnetic confinement device requires knowledge

about the magnetic geometry of the system. It is assumed that many relevant quantities

(pressure, density, temperature) are constant on magnetic flux surfaces, due to the fact

that transport along field lines is at least a magnitude faster than transport across. This

assumption allows comparing (local) density measurements performed at different toroidal

angles, in spite of the helical twist of the plasma, by translating the (local) measurements

to a magnetic coordinate system.

At TJ-II, one typically relies on VMEC10 calculations at zero pressure to provide the

magnetic geometry, or (equivalently) on a code that directly uses the Biot-Savart law to

estimate the magnetic flux. The vacuum magnetic configuration is identified by a label

consisting of three numbers proportional to the currents in the external coil sets. The

assumed magnetic geometry is subject to the following error sources:

• Errors in the calculated vacuum magnetic field due to approximations used in the field

source: the continuous current distribution in external coils is approximated by a finite

number of filamentary currents. Earlier studies have determined the minimal number

of filaments needed to achieve good convergence11. The resulting error is negligible.

• Errors due to model simplifications: magnetic islands are ignored.

• Errors due to the positioning of the external coils: the coil placement precision is at

the mm level. Coil displacements could in principle produce error fields that might

resonate with the main field, leading to the formation of (unwanted) islands. However,

the experimental measurement of the vacuum field structure has shown that such error

fields are insignificant12.

• Errors due to stray fields: TJ-II has been built using low-magnetization steel, and

additional installations have also been analyzed carefully in this respect. Stray fields

are expected to be insignificant.

• Errors in the amplitude of the currents in the external coils (measured to be below a few

percent). Such errors would lead to a change of the effective magnetic configuration,

mainly modifying the rotational transform and the radial position of the rational
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surfaces. The effect on the shape of the flux surfaces is, however, small, except when

the modification of the rotational transform profile leads to the introduction of a low-

order magnetic resonance (island) in the plasma.

• Errors due to net currents in the plasma. Net currents do sometimes flow inside the

plasma, typically smaller than a few kA. These currents are associated with (a) the

bootstrap current13, (b) an external Ohmic drive14,15, (c) the drive by NBI (usually

small), (d) the drive by ECRH (usually small except in current drive experiments)16.

Such net currents (with a distribution that is often partly unknown) produce a modi-

fication of the magnetic field, thus modifying the configuration (mainly the rotational

transform profile and the radial position of the rational surfaces).

• Errors due to finite pressure. In ECRH plasmas, 〈β〉 is small. In NBI plasmas, 〈β〉

may attain values of up to about 1%. The induced Shafranov shift of the magnetic

axis is approximately linear in 〈β〉 and is only about 3.5 mm for 〈β〉 = 1%. This

small deformation of the magnetic geometry due to 〈β〉, even at the magnetic axis

where this effect is largest, means that vacuum geometry generally provides a good

approximation of the true geometry at finite pressure at TJ-II.

In summary, the magnetic geometry delivered by the vacuum calculations is expected to be

quite close to the actual magnetic geometry except in the presence of significant islands.

Therefore, we will limit our studies to plasmas without large islands and assume that the

actual magnetic geometry is approximated satisfactorily by the vacuum magnetic geometry,

as calculated.

Therefore, knowing the magnetic geometry and the location of the diagnostics in real

space (also with good accuracy), it is possible to calculate the diagnostic response of some

of these diagnostics to theoretical profiles (in the framework of forward modelling). We will

assume that all relevant plasma quantities depend only on the toroidal magnetic flux, ψ (i.e.,

the effective radius, ρ =
√
ψN , where the N stands for “normalized”: ψN = ψ/ψLCFS, where

ψLCFS is the value of the flux at the Last Closed Flux Surface). In other words, assuming

an input profile n0
e(ρ) one should be able to compute the relevant diagnostic responses

without difficulty on the basis of the magnetic geometry, which provides a mapping from

the cylindrical coordinates (R, φ, Z) to ρ.
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In principle, the flux surface mapping is only available within the LCFS. However, the

density is not zero at the LCFS; it falls to zero within a few cm outside the LCFS. Since

the density is parametrized in terms of ρ (see next subsection), we will need to compute an

approximate value of ρ outside the LCFS, along the various diagnostic chords. To do so, we

first compute ρ along the chord ρ(Rchord, Zchord) inside the LCFS (at a constant value of φ),

and extrapolate linearly outside the LCFS. This extrapolation is reliable up to and slightly

beyond ρ = ρmax = 1.2.

B. Parametrization of the density profile

In the framework of modelling the diagnostic responses, one needs to express the model

profile n0
e(ρ) via a parametric representation:

n0
e(ρ) = n0

e(ρ, αk), k = 1, ..., K, (6)

where the αk are the profile parameters. In principle, one could use any simple polynomial

expansion, or, e.g., splines17. We will use the Fourier-Bessel series, that can be written as

(ρ ≥ 0):

n0
e(ρ) =

K∑
k=1

αkJ0 (λkρ/ρmax), (7)

where λk is the kth zero of the Bessel function J0, and ρmax = 1.2.

This expansion offers the following important advantages: (a) the expansion consists of

functions with zero derivative at ρ = 0 that drop to zero at ρ = ρmax. Therefore, the

expansion will converge rapidly for profiles with the same properties, such as the density

profile, which has zero gradient at ρ = 0 since the particle flux, proportional to the gradient,

must vanish there, while the profile must drop to zero at some point ρmax > 1; (b) the

expansion is complete (capable of approximating any continuous, square-integrable, function

with arbitrary accuracy); (c) the expansion consists of orthogonal functions. Thus, the

coefficients will be linearly independent, which serves to stabilize the maximization process

discussed below. In fact, these functions satisfy the following orthogonality condition (n,m >

1): ∫ 1

0

J0 (λnρ) J0 (λmρ) ρdρ ∝ δmn, (8)

which is an appropriate condition for radial basis functions in a cylindrical coordinate system.
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C. Interferometry

The microwave interferometer at TJ-II provides a value of the line-integrated electron

density. The phase change of the interferometer beam as it traverses the plasma is computed

by:

∆φ =

∫
(η − 1)

ω

c
dl, (9)

where η is the refractive index18. For the ordinary wave (propagation perpendicular to ~B

and ~E‖ ~B):

η2 = 1− ω2
p/ω

2 = 1− ne/nc, (10)

where nc = ω2meε0/e
2 is the cutoff density. Thus

∆φ =
ω

c

∫ (√
1− ne/nc − 1

)
dl ' − ω

2cnc

∫
nedl (11)

where the approximate equality holds when ne � nc. In standard interferometry anal-

ysis, it is customary to use the approximate expression; however, here we can apply the

exact expression without additional difficulty since we use forward modelling. For the TJ-II

microwave interferometer, f = 140 GHz, so ω = 8.78 · 1011 s−1 and nc = 2.43 · 1020 m−3.

For the purposes of this work, we rewrite the above expression as:

n0
e ≡ −

2cnc∆φ

ωLc
=

1

Lc

∫
2nc

(
1−

√
1− n0

e(R, φ, Z)/nc

)
dl (12)

along the chord of the interferometer line of sight, parametrized as (Rint(l), φint, Zint(l)),

shown in Fig. 1. The chord length Lc is the intersection of the chord with the plasma region

(ρ ≤ 1) for the given configuration. Note that n0
e is not simply the mean of n0

e along the

chord, but includes the small correction for the dependence of the refractive index on ne/nc

discussed above. This computed value of n0
e can be compared directly to the density signal

(ne) in the TJ-II database. While the density profile is allowed to extend beyond ρ = 1, the

normalization Lc is still based on the intersection of the chord with the theoretical plasma

region (ρ ≤ 1), since this is how the experimental signal is computed also.

The error of the phase detector is about 2π/10, which translates into an error in the

line-integrated density of about ∆ne
in = 0.025 · 1019 m−3 (assuming a typical chord length

of 0.4 m and not considering spurious phase jumps), where the superscript “in” means

“instantaneous”. For the purposes of profile reconstruction, we will calculate the time-

averaged line integrated density by averaging the interferometry data over 1 ms of time (i.e.,
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FIG. 1. Geometry of the 2 mm microwave interferometer beam in TJ-II Sector B8, φ = 264.4◦

(configuration shown: 100 44 64).

N = 100 points). This time interval is long enough to smooth out rapid oscillations19, and

short enough to adequately capture mean profile evolution. Therefore, the final error is

∆ne = ∆ne
in/
√
N = 0.0025 · 1019 m−3.

D. Reflectometry

For profile measurement, (X-mode) microwaves are launched as shown schematically in

Fig. 2. For profile measurement, the beam is launched with a variable frequency f (a ramp),

and the return phase is detected20. The time delay τ 0(f) of the reflectometer beam, reflected

off the cutoff layer inside the plasma, is estimated by:

τ 0(f) =
1

2π

dφ

df
(13)

where the phase is determined as:

φ(f) =
4πf

c

∫ a

rc(f)

η(f, r)dr − π

2
(14)

Here, rc(f) is the position of the cut-off layer (determined as the first point where η becomes

zero, counted from the plasma edge). The integration limit “a” refers to the point where the
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FIG. 2. Geometry of the reflectometer beam in TJ-II Sector A4, φ = 135◦ (configuration shown:

100 44 64). The location of the vacuum vessel is indicated by the blue line on the right.

density drops to zero; this point may be slightly outside the LCFS. The time delay can be

used to reconstruct the density profile, as each frequency corresponds to a different cutoff

position and density (cf. Appendix A).

In the above expression, the X-mode refractive index η(f, r) is computed using (ω = 2πf):

η2 = 1− X(1−X)

1−X − Y 2

X = ω2
pe/ω

2

Y = ωec/ω

ω2
pe = n0

ee
2/ε0me

ωec = eB/me (15)

Thus, the expected time delay τ 0(f) can be computed from the model profile n0
e(ρ). The

above expression only contemplates propagation inside the plasma (the region where n0
e(ρ) >

0). The vacuum correction is discussed below.

The measurements do not deliver the time delay τ(f) directly. In actual fact, the reference

beam is amplitude modulated with a modulation frequency fmod. The spectrum of the beam
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is therefore characterized by f and two sidebands at f ± fmod, while f is scanned. The

detection equipment delivers two quadrature (sine and cosine) signals s(t) and c(t), as well

as the reference frequency f(t). The calculation to deduce τ(f) from these raw data involves

some careful smoothing and correction of phase jumps.

The instantaneous signal amplitude A(t) is calculated as A(t) =
√
c2 + s2 and the instan-

taneous phase as φ(t) = tan−1(s/c). Assuming a random and independent measurement

error of size ε in the measured signals c and s, the error in A is ∆A = ε, while the error in φ

is ∆φ = ε/A (using standard error propagation). This approximate result must be corrected

for the non-Gaussianity of the error distribution of c and s due to the non-linearity of the

trigonometric functions. It can be shown that the above calculations underestimate the

error in φ by a factor of
√

2 (see Appendix B). To correct for this, we will estimate ∆φ by

∆φ =
√

2ε/A.

From the above considerations, ε can be estimated from the Root Mean Square (RMS)

deviation of A(t) for actual data. For this purpose RMS(A) is calculated using 31-point

bins. The experimental time delay is obtained from τ = φ/2πfmod
21,22, where fmod is the

modulation frequency (0.2 GHz) of the carrier frequency. The corresponding error in τ is

thus found from ∆τ = ∆φ/2πfmod '
√

2ε/2πfmodA = RMS(A)
√

2/2πfmodA. This estimate

adequately takes account of the effects of occasional signal loss (leading to small amplitudes

A) during a frequency scan21.

The final measured time delay τref is calibrated by subtracting the vacuum time delay

(the delay corresponding to the microwaves bouncing off the vacuum vessel wall, located at

R = Rwall, see Fig. 2) from the measured time delay: τref(f) = τ(f)−τvac(f). This calibration

is important, as it removes any spurious time delays caused by propagation in waveguides

and other parts of the measurement equipment. The vacuum correction is assumed not to

contribute significantly to the measurement error, so ∆τref = ∆τ . To calibrate the modelled

τ 0(f) in the same way, an offset τoff is added that is calculated from the profile n0
e(ρ) as

τoff = 2(R(n0
e = 0)−Rwall)/c, (16)

yielding a typical value of about −1.5 ns (modulo 5 ns in view of the modulation frequency

fmod = 0.2 GHz).
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FIG. 3. Geometry of the Thomson Scattering probing laser beam (red dashed line) in TJ-II Sector

D2, φ = 14.5◦ (configuration shown: 100 44 64). The observation optics (the spectrometer) are

located to the right (some lines of sight are indicated by long-dashed lines).

E. Thomson Scattering

The Thomson Scattering diagnostic provides local measurements of ne and Te, with a

high radial resolution of between 2 and 6 mm23. Fig. 3 shows the geometry of the probing

laser beam and some of the viewing chords. The present work relies on the reconstruction

of the local profile ne(ρi) from the measured spectrum, along with the corresponding errors,

∆ne(ρi) (i = 1, ..., NTh), delivered by standard data analysis software described elsewhere23.

This information is retrieved from the TJ-II shot database24. Due to drifts in the absolute

calibration of the diagnostic, an additional scale parameter ATh ' 1 will be used to multiply

the TS density profile (see below). The Thomson Scattering laser can be fired only once

during the discharge. Therefore, profile reconstructions using the TS data are limited, in

principle, to times close to the TS laser pulse time (and, due to a fixed delay between the

software trigger and the actual firing of the laser, the actual Thomson Scattering laser pulse

time is the time stored in the database +6.4 ms). However, the scaling factor ATh allows

some flexibility in this sense: provided plasma conditions and the shape of the density profile
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FIG. 4. Geometry of the supersonic Helium beam trajectory in TJ-II Sector C8, φ = 355.3◦

(dashed line, injection from above; configuration shown: 100 44 64). The observation optics are

located to the right; the 16 observation lines are indicated schematically, and the first and last line

are prolonged up to their intersection with the Helium beam to indicate the observation region.

are known not to change much between the laser time tTh and some other time of interest

t1, the scale factor of the profile is adjusted automatically (using the line-integrated density

from the interferometer as a reference) to provide an approximate profile shape at t1, some

time away from the laser pulse time, as discussed below.

F. Helium beam

The Helium beam diagnostic consists of a supersonic Helium source with a pulsed valve

system and a system for the detection of the resulting line emission25,26. Fig. 4 shows the

geometry of the probing supersonic Helium beam. The Helium beam can be operated in

pulsed mode, with a repetition rate of up to 200 Hz, thus providing profiles every 5 ms or

more. The observation system detects three emission lines (λj = 667, 706, and 728 nm for

j = 1, ..., 3) along NHe = 16 lines of sight, nearly perpendicular to the Helium beam. From

the ratio of the line amplitudes, ne and Te can be deduced using an interpolated table lookup
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FIG. 5. Shot 24729, example time trace of the He line emission, channel 06, emission line at 667

nm.

procedure, using the tabulated values of predicted line ratios versus density and temperature,

based on a collisional-radiative model26. This model has been shown to provide a satisfactory

accuracy for typical TJ-II plasmas, but is subject to future improvement. Due to the crossing

of the Helium beam and the lines of sight, this diagnostic provides local measurements (with

a radial resolution of about 4 mm and a toroidal resolution of about 20 mm), limited to the

edge region due to beam attenuation.

An example of the evolution of the line emissions in shown in Fig. 5. There is a gradual

buildup of emission, and on top of that the pulses are visible. The variance of the signal

is seen to increase proportionally to the total emission intensity, which is typical of Poisson

noise (or “shot noise”). The control signal from the beam valve allows identifying the ‘beam

on’ time interval closest to the time of interest. The subsequent analysis is limited to a

time interval, centered around this ‘beam on’ time, containing both the pulse itself and

the background. One of these pulses is selected for analysis and a time window is chosen,

centered on the selected pulse, such that it includes only this pulse. In the following, we

describe the analysis procedure applied to each of the 3 × 16 = 48 detected line emission

signals in the selected time window.

The actual measurement Iact(t), in appropriate units, is related to the measured emission

Imeas via a scale factor S > 0:

Iact(t) = SImeas(t) (17)

This scale factor is needed because the measured emission is in arbitrary units, not in
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photon count units. Imeas is offset-corrected by determining the mean value at the start of

the discharge (prior to He injection) and subtracting this value from the data.

We assume that the detected line waveform can be modelled, to good approximation, by:

I(t) = S (Ib(t) + AG(t− t0, σ)) , (18)

where G is a normalized Gaussian, G(t, σ) = exp(−t2/2σ2)/
√

2πσ2. The line emission

intensity I(t) is a positive definite quantity because it is due to a photon emission process,

and subject to Poisson statistics. The term Ib defines the background emission, the level of

which is important in the framework of Poisson statistics. In a neighbourhood of a given

emission peak, this background is modelled by a linear drift:

Ib(t) = c+ bt (19)

Below we will show how the background drift parameters, the peak time t0, and the scale

factor S are determined.

Assuming Poisson statistics, the probability of measuring an actual emission Iact(t), given

the model line intensity I(t), is:

p(Iact(t)|I(t)) =
I(t)Iact(t)e−I(t)

Γ(Iact(t) + 1)
(20)

This allows us to define a logarithmic likelihood function L:

L(~α) =
1

N

N∑
i=1

log p(Iact(ti)|I(ti)) (21)

where the parameter vector ~α consists of: {A, σ}; the remaining parameters {t0, b, c, S} are

not varied and are determined as described below. The best fit is obtained by maximizing

L, and the error in the parameters can be found from the shape of L near its maximum.

The background drift is determined by fitting the first and last 20% of the data, denoted

by Iback
meas (consisting of two disconnected time intervals, centered at the peak) to a straight

line, yielding b and c directly (different values for each emission line).

To find t0, the data from the 48 data channels (3 line emissions at 16 positions) are

summed together (yielding Itot
meas(ti)), and t0 is found from

t0 =
∑
i

ti|Itot
meas(ti)|/

∑
i

|Itot
meas(ti)| (22)
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FIG. 6. Shot 24729, scaled He line emission, channel 06, emission line at 667 nm Iact (blue), and

fit I (green Gaussian). The width of the Poisson distribution (the error level) is indicated by the

three slanted parallel lines.

Allowing t0 to be a free parameter would lead to very bad fits for channels with a low signal

to noise ratio.

The scale factor S is determined from the requirement that the emission should follow

Poisson statistics. This means that the variance of the background should be related to its

mean by the following relation: 〈
Iback

act

〉
= var

(
Iback

act

)
, (23)

where the angular brackets indicate the mean value, and “var” stands for “variance”. Thus,

using Eq. (17):

S =
〈
Iback

meas

〉
/var

(
Iback

meas

)
(24)

In Fig. 6 we show an example of a fit to the line emission. Shown are: Iact, I, the

background drift, and the (Poisson) error level of the background. The vertical axis indicates

the photon counts. The misfit of the line shape is due to the fact that the model waveform (a

symmetric Gaussian) is not completely adequate, as the line emission waveform rises quicker

than it decays; its actual waveform consists of an exponential rise (∝ 1− exp(−(t− t1)/τ))

followed by an exponential decay (∝ exp(−(t−t2)/τ)). However, since we are only interested

in the relative amplitudes of the waveform, the Gaussian is a satisfactory approximation.

The errors in Aij, i = 1, ..., 16 indicating the positions and j = 1, ..., 3 the three emission

lines, are propagated to the ratios Rij using standard error propagation. The line ratios are
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computed as Ri1 = C1Ai1/Ai3 and Ri2 = C2Ai3/Ai2, where the Ck(k = 1, 2) are calibration

factors, each with corresponding error ∆Ck. Therefore:(
∆Ri1

Ri1

)2

=

(
∆C1

C1

)2

+

(
∆Ai1
Ai1

)2

+

(
∆Ai3
Ai3

)2

(25)

and similar for Ri2.

The error ∆ne can easily be deduced applying straightforward error propagation to the

interpolated table lookup procedure26. The table lookup yields ne(ρi) = f(Ri1, Ri2) and

Te(ρi) = g(Ri1, Ri2), so the propagated error is

(∆ne(ρi))
2 =

(
∂f(Ri1, Ri2)

∂Ri1

∆Ri1

)2

+

(
∂f(Ri1, Ri2)

∂Ri2

∆Ri2

)2

(26)

and similar for Te(ρi). Here, the partial derivatives are computed using finite differences

with step size equal to the errors in Rij, since the error is not infinitesimal.

IV. RECONSTRUCTION OF THE TJ-II DENSITY PROFILE

As explained in Section II, the posterior probability distribution is a product of probabil-

ities, L = ΠjLj, each factor corresponding to either a prior or a diagnostic (forward model).

We define the logarithmic posterior L = logL =
∑

j Lj. In the following, we define the form

of the individual terms of this sum used in the reconstruction of the density profile.

A. Priors

In order to guarantee physically reasonable profiles, a number of priors is used.

To guarantee positivity of the profile in the region 0 ≤ ρ ≤ 1, we introduce a term

L1 =

n1∑
i=1

−(min(0, n0
e(ρi))

2

2σ2
1

. (27)

The ρi are chosen equidistant in the range 0 ≤ ρi ≤ 1. We choose n1 = 20, and σ1 = 0.0001,

yielding a high penalty for negative profiles. A positive (acceptable) profile has L1 = 0 (i.e.,

probability P1 = exp(L1) = 1).

Another term is introduced to keep the density n0
e(ρ) small outside the LCFS (ρ > 1):

L2 =

n2∑
i=1

−(max(0, n0
e(ρi))

2

2σ2
2

(28)
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Negative densities are ignored. The ρi are chosen equidistant in the range 1.1 ≤ ρi ≤ 1.2,

while n2 = 4 and σ2 = 0.01. This prior allows a non-zero density close to the LCFS (ρ < 1.1),

but penalizes positive densities further away.

A third prior is introduced to reflect the knowledge, obtained from experience, that

density profiles tend to be rather flat in the centre:

L3 =

n3∑
i=1

−(∂ρn
0
e(ρi))

2

2σ2
3

, (29)

where ∂ρf = ∂f/∂ρ. The ρi are chosen equidistant in the range 0 ≤ ρi ≤ 0.6, while n3 = 5

(typically) and σ3 = 0.1. This prior is only used when a reconstruction is made without

information from Thomson Scattering (so that no profile information is available for the

central part of the profile).

The choice of values for n1, n2, and n3 is somewhat arbitrary and motivated by a practical

balance between a sufficient sampling of the solution space and reduced computational effort.

It is possible that specific circumstances may require more priors. For example, oscillating

profiles can be avoided by penalizing second derivatives. In the present work we will not

consider this possibility.

B. Interferometry

As explained above, the interferometer provides ne and a corresponding error ∆ne. Thus,

we add the corresponding term to L:

L4 = −(ne − n0
e)

2

2(∆ne)2
(30)

C. Reflectometry

Another term corresponds to reflectometry:

L5 = − Nfr

Nref

Nref∑
i=1

(τref(i)− τ 0(i)− τoff)2

2(∆τref(i))2
(31)

Here, the index i enumerates the points of the reflectometer frequency scan around the time

of analysis (typically, Nref ' 1000, covering 2 ms of real time). Time evolution of the profiles

during the scan is not considered. The calibration parameter τoff , calculated according to

19



Eq. (16), is explicitly included in the expression. The error ∆τref is estimated using the

method described above.

The factor Nfr/Nref arises due to the fact that the time delay τ(fr) is computed from

an amplitude-modulated signal with modulation frequency fmod = 0.2 GHz. The reference

frequency fr is scanned from f 0
r ' 25 GHz to f 1

r ' 50 GHz while its amplitude is being

modulated, and during the scan Nref measurements τ(fr) are obtained. However, samples

that are less than (twice) the modulation frequency fmod apart are not statistically indepen-

dent: thus, in the range f 0
r ≤ fr ≤ f 1

r , only Nfr = (f 1
r − f 0

r )/2fmod independent samples are

obtained (the factor 2 appears because the spectrum of the AM signals contains two peaks at

fr ± fmod, separated by 2fmod). Typically, this means that the ∼ 1000 actual measurements

only contain ∼ 60 independent information units.

D. Thomson Scattering

As mentioned above, Thomson Scattering is handled by incorporating the reconstructed

TS profile nThe (ρ) along with its error ∆nThe (ρ). Thus, adding Thomson Scattering comes

down to adding the following term to L:

L6 = −
NTh∑
i=1

(AThn
Th
e (ρi)− n0

e(ρi))
2

2(ATh∆nThe (ρi))2
(32)

where a TS scaling factor ATh has been included as an additional free parameter without

restrictions (in other words, the prior distribution for ATh is flat).

E. Helium beam

Similar to the above, adding Helium beam information amounts to adding the following

term to L:

L7 = −
NHe∑
i=1

(nHee (ρi)− n0
e(ρi))

2

2(∆nHee (ρi))2
(33)
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F. Total posterior probability

The total posterior probability is then

L =
7∑
i=1

θiLi, (34)

where θi are switches (θi = 0, 1) that allow selecting priors and diagnostics. The best profile

n0
e(ρ) is found by varying the αk (and ATh, in case TS is used) in order to maximize L.

This is done using a standard routine (E04FYF27). A major problem of this approach is

that the maximization may get stuck in a local maximum, so that the result may depend

on the initial set of parameters at the start of the maximization (which is undesirable). The

starting point of the maximization is usually taken from a previous run, as profiles tend to

have roughly the same global shape. Otherwise, a safe procedure is starting from a very low

value of K (the number of profile parameters) and gradually increasing K to its final value

over successive runs.

The inclusion of more priors may alleviate the sensitivity to initial conditions and local

maxima, as it delimits the solution space. In any case, the random exploration of parameter

space involved in marginalization process (see below) allows detecting other local maxima

of L, if any, and reinitializing the maximum search from such a new, higher maximum.

G. Error estimation by marginalization

Once we know the ‘best’ profile n0
e(ρ) from the maximization of L, we would also like to

know its error ∆n0
e(ρ). This is done on the basis of the joint probability distribution

P (n0
e, ~α|~d, ~σ, I), (35)

where n0
e is the model profile, ~d are the data, and ~σ the errors in the data. The model

parameters are represented by ~α.

Then, the mean and mean square values of the density are determined by

n0
e =

∫
n0
eP (n0

e, ~α|~d, ~σ, I)d~α

(n0
e)

2 =

∫
(n0

e)
2P (n0

e, ~α|~d, ~σ, I)d~α (36)
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which can be simplified by means of the product rule

P (n0
e, ~α|~d, ~σ, I) = P (n0

e|~α, ~d, ~σ, I) · P (~α|~d, ~σ, I) (37)

where the first term on the right-hand side is a delta function, since ~α completely specifies

n0
e. The second term is proportional to the posterior probability specified above. The

proportionality factor is important, but can be obviated by normalizing the expressions

Eq. (36) by ∫
P (n0

e, ~α|~d, ~σ, I)d~α (38)

From this, the error in the model or reconstructed density ∆n0
e is found from

(
∆n0

e

)2
= (n0

e)
2 −

(
n0
e

)2

(39)

The multi-dimensional integral over the parameters αi is performed using Monte Carlo

estimation with importance weighting. For the purpose of distributing the random sampling

points needed for this procedure, the shape of the function L(~α) near its maximum, L(~α0),

is approximated by a parabolic function with negative curvature in all directions (i.e., this

distribution is approximated by a product of Gaussians, one for each coordinate direction

αi). In order to estimate the width σ(αi) of the Gaussian in a given direction αi, L is

sampled around its maximum. Since no information about the numerical size of σ(αi) is

available a priori, αi is varied logarithmically to explore all possible relevant scales, taking

21 points distributed as αi(s) = α0
i + sgn(s) · 10|s|−6, s = −10,−9, ..., 10, where sgn(s) is the

sign function (sgn(s) = 1 for s > 0, sgn(s) = −1 for s < 0, and sgn(0) = 0). The zeroth

(Mi,0) and second (Mi,2) statistical moments of exp(L) are computed as:

Mi,j =

∫
αi

(αi − α0
i )
j exp(L(~α, ...))dαi, (40)

keeping all αj, j 6= i fixed at their optimal value α0
j . Account is taken of the non-homogeneous

distribution of the sampling points αi(s) when evaluating this integral as a sum over the 21

sampled values. σ(αi) is estimated from
√
Mi,2/Mi,0.

Note that σ(αi) need not be very precise, since the actual marginalization is done using the

true function L. So, when using the Monte Carlo approach to evaluate the multi-dimensional

integral, the random values of ~α are distributed according to a product of Gaussians, centered

at the maximum likelihood point ~α0, and with a width along each parameter axis given by
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σ(αi). The moments (36) and (38) are then found as sums over the random instances of ~α,

corrected for the Gaussian weights28. We use 1000 random points to evaluate the integrals.

If a higher maximum is encountered during the evaluation of the marginalization integrals,

then the process of maximization and subsequent marginalization can be restarted from that

new point. This technique significantly reduces the probability of ‘getting stuck’ in a local

maximum.

H. Error interpretation and local profile error

While the marginalization process of the preceding section provides an error estimate of

the final profile, some remarks regarding its interpretation are necessary.

Assume we perform a hypothetical profile measurement that returns profile estimates

ne(ρi) for a set of points i = 1, ..., N . As described above, we model this profile by a

function n0
e(ρ, ~α) with K degrees of freedom, i.e., the parameter vector ~α has length K.

The corresponding (global) logarithmic likelihood is given by:

L(~α) =
N∑
i=1

log p(ne(ρi)|n0
e(ρi, ~α)), (41)

where p is the appropriate likelihood distribution for the individual measurements. For

simplicity, we assume the ρi are given by, e.g., ρi = i/N (uniformly distributed). As N is

increased (by performing more measurements), the function L(~α) becomes ever narrower,

corresponding to the continuous reduction of the error in ~α. This makes sense, because

adding measurements means that the knowledge of ~α improves and the error in ~α is reduced.

However, if we now attempt to determine the error in the density profile by marginal-

ization over ~α, the error in the (local) density also decreases with N (∆n0
e ∝ 1/

√
N). This

correctly reflects the improved knowledge of the parameters ~α, but does not reflect our ex-

pectations regarding the “local precision” of the profile n0
e(ρ). As an example, additional

measurements near ρ = 1 help to define the global profile (improving the knowledge of ~α),

but should not affect the precision of the profile at a remote location, e.g., near ρ = 0. This

would only make sense if the profile was totally “stiff”, e.g., a fixed radial shape multiplied

by a variable constant (K = 1). But if K > 1, the errors in ne near ρ = 0 and ρ = 1 should

be essentially decoupled. In fact, one would expect the final error of the density n0
e(ρi) to be
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close to ∆ne(ρi) (the local measurement error of ne(ρi)), and in particular, the local error

should be essentially independent from N .

To estimate this local error in n0
e(ρi), we can introduce a local version of the global

logarithmic likelihood, or (formally):

Lloc(~α, ρ) =
N∑
i=1

log p(ne(ρi)|n0
e(ρi, ~α))δ(ρi − ρ) (42)

such that L(~α) =
∫
Lloc(~α, ρ)dρ. The local likelihood only responds to profile variations

at a given value of ρ and thus measures the local profile error. Obviously, the formal

expression (with a delta function) is not practical due to the limited spatial resolution of

the measurements; we will therefore use a test function with a finite width σtest, as follows.

The sensitivity of the likelihood to local profile modifications can be explored by modifying

n0
e(ρ) in a small neighbourhood of a given radius ρtest, e.g., by adding a test function to the

profile equal to a narrow Gaussian, centered at ρtest, and observing the variation of L. The

amplitude of this variation can then be used to define the local error bar. Thus, we replace

n0
e(ρ) by:

n0
e(ρ)→ n0

e(ρ) + ∆ntest exp

(
−(ρ− ρtest)

2

2σ2
test

)
(43)

We then choose various values of ∆ntest, and record the likelihood response L(∆ntest), keep-

ing ~α fixed at the optimum value. The width of this response distribution (i.e., the value

of ∆ntest for which L changes by 1) defines the local profile error at ρ = ρtest. A similar

procedure has also been discussed by Fischer17. Obviously, the local profile error depends

on the test function width σtest; in the following, we will use σtest = 0.01 as a compromise

between a test function that is as narrow as possible, yet sufficiently wide to generally in-

clude several measurement points. So the reported error bar can be understood as the local

profile precision, where “local” is defined by an interval with full width 2σtest.

A similar procedure is used to explore the local precision of dn0
e(ρ)/dρ; namely by modi-

fying the profile by

n0
e(ρ)→ n0

e(ρ) + ∆n′test(ρ− ρtest) exp

(
−(ρ− ρtest)

2

2σ2
test

)
(44)
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V. PROFILE RECONSTRUCTION EXAMPLES

In the following, we present a few examples of the application of the method to density

profile reconstruction at TJ-II.

In Section V A, we show how the Bayesian method is capable of robustly reconstructing

the density profile using various combinations of diagnostics. It is shown how the precision

of the result depends on the available diagnostics, and how a missing diagnostic (Thomson

scattering) can be handled by activating an appropriate prior. This is important in view of

the fact that the TJ-II Thomson scattering system is a single-pulse system.

In Section V B, we present a case with electrode biasing (leading to enhanced particle con-

finement), showing a robust and automated reconstruction of the density profile is possible

based on reflectometry and interferometry, and allowing the visualization of the dynamical

evolution of the density profile across a confinement transition – something that was hard

or impossible to do using the traditional (non-robust) reflectometry profile reconstruction

method.

Finally, in Section V C, we present density profile reconstructions across an L-H transition

in order to show that the method is also suitable for high density discharges.

A. An ECRH plasma

The profile reconstruction program is modular and allows selecting which diagnostics are

used (by means of the parameters θi), so that the effect of adding diagnostics on profile

reconstruction can easily be observed. In this section, we analyze a typical ECRH plasma

(discharge 24729, magnetic configuration 100 44 64, ne ' 0.6 · 1019 m−3). Table I gives

details about 4 cases studied (switching on and off diagnostics), and Figs. 7-10 show the

corresponding profiles. The absolute value of L listed in the table may seem rather large.

However, to put these numbers into perspective, it should be noted that the effective number

of terms contributing to L is about 60 (reflectometry), 200 (Thomson Scattering), and 16

(Helium beam), plus 25-30 additional terms (priors and interferometry). A corresponding

value of the reduced χ2 (a standard tool to judge the quality of least-squares fits) can be

defined by χ2 = −2L/Ntot, where Ntot is the total number of terms. Thus, the obtained

values of L correspond to reduced χ2 values of the order of 1, i.e., reasonably good fits. This
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situation also serves to confirm that the errors are defined properly.

In the following figures, the reconstructed profile corresponding to the maximum likeli-

hood point is indicated by a black line, and the local one-σ error level (computed as described

in the preceding section with σtest = 0.01) is indicated by a grey area.

Fig. 7 shows the reconstruction based on the reflectometry and interferometry data alone.

Since no data are available for the central profile shape, the prior L3 is activated. Thus,

the central profile is forced to be nearly flat, while the mean density is set by the interfer-

ometer. Note that the upper part of the traditional reflectometry profile (ne & 0.7 · 1019

m−3) is ignored, in accordance with the ambiguity analysis presented in Appendix A. To

fully judge the match between the traditional reflectometry profile (green) and the Bayesian

reconstructed profile (black), one would need to know the error in the traditional reconstruc-

tion. However, this information is not available; even so, the match seems to be reasonable,

considering the local error of the Bayesian reconstruction (grey). The fine structure of the

grey area (indicating the “local error level” of the reconstructed profile) reflects, in part, the

structure of the prior L3 (“knots” at ρ = 0, 0.15, 0.3, 0.45, 0.6). We stress the importance of

this result: at TJ-II, Thomson Scattering can deliver the core density profile only at a single

time point; the present, new procedure allows reconstructing density profiles away from the

TS time.

Fig. 8 shows the reconstruction based on the Thomson Scattering and interferometry

data alone. Now, there are no edge data, so the prior L2 (always activated) acts to keep

the profile down at the edge. As a consequence, the profile drops to zero near the LCFS.

The Thomson Scattering data are scaled up slightly (see Table I) so that the line-integrated

density matches the interferometer value. Note the reduction of the “local error level” in

the radial range (0.65 < ρ < 0.8) where the density of data points is higher (due to the

mapping from the laser beam chord to the magnetic geometry).

Fig. 9 shows the reconstruction based on interferometry, reflectometry and Thomson

Scattering. Thus, a satisfactory reconstruction of the density profile is obtained by combining

three diagnostics: interferometry sets the overall density value, establishing an appropriate

value for the Thomson Scattering scaling factor ATh, while Thomson Scattering provides

the shape of the central density profile, and reflectometry provides the shape of the density

profile in the edge.

Fig. 10 shows the reconstruction based on interferometry, reflectometry, Thomson Scat-
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tering, and the Helium beam. The He beam data provide independent confirmation of the

preceding results; the relatively large size of the He beam error bars implies that its weight

is not high, so the Bayesian profile is very similar to the one of Fig. 9.

TABLE I. Shot 24729, t = 1126.5 ms, using a Bessel polynomial with K terms, target line average

density ne = 0.596 (units: 1019 m−3).

Case K L n0
e ATh

Inter + refle 4 -374 0.592 -

Inter + Thomson 7 -140 0.596 1.21

Inter + refle + Thomson 7 -409 0.600 1.20

Inter + refle + Thomson + He beam 7 -416 0.600 1.20
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FIG. 7. Reconstructed profile using interferometry and reflectometry (see Table I). The traditional

reflectometry profile (green) is followed closely, except for the high-density part (sensitive to profile

ambiguity, as discussed in Appendix A). The central profile is approximately flat, in accordance

with the prior L3, while the mean density is set by the interferometer.
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FIG. 8. Reconstructed profile using interferometry and Thomson scattering (see Table I). A good

match with the Thomson profile is obtained, given the value of K used (7). The density drops to

zero near the LCFS, due to the prior L2.
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FIG. 9. Reconstructed profile using interferometry, reflectometry, and Thomson scattering (see

Table I).
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FIG. 10. Reconstructed profile using interferometry, reflectometry, Thomson scattering, and the

Helium Beam (see Table I).

29



B. Biasing

As another example, we show the reconstruction of the density profile in a set of similar

discharges with electrode biasing (# 16009 − 16015, configuration 100 44 64). The biasing

electrode was inserted about 2 cm into the plasma (ρ ' 0.9) and biased positively with

respect to a poloidal limiter tangent to the Last Closed Flux Surface (LCFS), in the time

interval 1100 ≤ t ≤ 1150 ms. The biasing time interval and the response of the line inte-

grated density (averaged over the 7 discharges in the series) are shown in Fig. 11. These

discharges have been analyzed in previous work29,30. Significant long-range correlations (us-

ing toroidally separated Langmuir probes in the edge region) and bicoherence were detected,

indicating the formation of an edge transport barrier associated with bias-induced shear flow.

Fig. 12 shows the reconstruction of the density profile based on the AM reflectometer (one

profile scan every 2 ms) and the interferometer, using the Bayesian method described above.

To capture the detailed shape of the edge profile, we have set K = 15, and to ensure a flat

central density for ρ < 0.6, we have set n3 = 10 (in L3). The radial position of the steepest

gradient is ρ ' 0.7, unaffected by the application of the bias. At the very edge (ρ ' 1),

a steepening of the profile is visible. To view this in more detail, the density gradient at

ρ = 1 is shown in Fig. 13. The edge density gradient responds rapidly to the applied bias,

more so than the mean particle density (especially at biasing switch-off), thus confirming

the idea that electrode biasing generates an edge particle (electron) barrier. In relation to

this, it is interesting that during the biasing time interval, the bicoherence, also assumed to

be related to the formation of the edge transport barrier, was found to be concentrated in

the radial range 0.9 < ρ < 130.
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FIG. 11. Time trace of the line average density (interferometry), averaged over 7 similar discharges.

The time window in which biasing is applied is indicated by a grey area.
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FIG. 12. Reconstruction of the density profile, based on reflectometry and interferometry, with

2 ms time resolution (the time of a frequency scan of the reflectometer), averaged over 7 similar

discharges with electrode biasing (1100 < t < 1150, cf. Fig. 11).
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FIG. 13. Average edge density gradient, −〈dne/dρ〉 |ρ=1, for 7 similar discharges. The time window

in which biasing is applied is indicated by a grey area..
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FIG. 14. Time traces of the line average density and a Hα monitor in two similar discharges with

an L-H transition. The Thomson Scattering time is indicated by a vertical line: a) in discharge

23470, this time is before the transition, and b) in discharge 23471, after.

C. L- and H-mode plasma

In this section, the technique described above is applied to two similar discharges (mag-

netic configuration: 100 32 60) with an “L-H” confinement transition. The general proper-

ties of such transitions at TJ-II are described in more detail elsewhere31. Discharge 23470

was in L-mode at the Thomson Scattering time (t = 1145.5), while discharge 23471 was in

H-mode (t = 1155.5). Time traces of the line average density and a Hα monitor are shown

in Fig. 14. The Thomson Scattering time is indicated by a vertical line.

The reconstruction is performed as described in the preceding sections, using all four

diagnostics, at the TS times. The results are summarized in Table II and Fig. 15. There

is general good agreement between the various diagnostics. The traditional reflectometer

reconstruction is again affected by profile ambiguity for ne & 0.6 · 1019 m−3, as discussed

in Appendix A. The reconstructed profiles clearly show the widening of the density profile

when going from L to H; it appears a particle transport barrier forms at ρ = 0.74.
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TABLE II. Shot 23470 (L) & 23471 (H).

Case K L ne n0
e ATh

23470 (L) 12 -507 2.154 2.154 1.005

23471 (H) 12 -504 2.680 2.680 1.06
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FIG. 15. a) L-mode; b) H-mode. Red crosses: scaled Thomson Scattering data points; green line:

reflectometry profile (traditional reconstruction); blue circles: Helium beam data points; black line:

reconstructed profile; grey area: local error estimate. The maximum gradient locations of the two

profiles are indicated by vertical dashed lines to facilitate comparison.
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VI. CONCLUSIONS AND FUTURE WORK

In this work, we have implemented an integrated data analysis procedure based on

Bayesian inference at TJ-II for the first time.

We have developed new forward modelling simulations for the reflectometry and Helium

beam diagnostics, including a detailed error analysis. We also presented a novel analysis

of reflectometry profile reconstruction ambiguity, affecting traditional profile reconstruction

methods (Appendix A), and showed how this ambiguity can be resolved using the Bayesian

approach. The new analysis of the Helium beam emission is based on the use of Poisson

statistics. The interferometry data are analyzed without recourse to the common assumption

that the density is much smaller than the cut-off density.

We have demonstrated the successful reconstruction of profiles in both low-density and

high-density plasmas, via maximization of the posterior probability. The Bayesian method

allows defining priors that supplement the absence of certain diagnostics: e.g., in case infor-

mation on the core profile is missing (no Thomson Scattering available), the central profile

can be constrained by activating a prior to reduce the profile gradient in the central region,

reflecting the a priori knowledge that density profiles are generally flat in the core of TJ-II

(in ECRH plasmas). The latter procedure allows density profile reconstructions to be made

at other times than the (single) TS time point. It should be noted that any uncertainty re-

garding the precise shape of the central density profile will lead to an additional uncertainty

in the radial position of the external part of a profile that is reconstructed on the basis

of reflectometry and interferometry alone. Additional information from the Helium beam

and/or the Thomson scattering diagnostic, when available, serves to reduce this uncertainty.

We have shown how the gradual addition of diagnostics allows improving knowledge of

the underlying physical density profile. We have applied the technique of marginalization

to recover the error of the profile parameters, and have defined a more practical, local error

estimate that can be used as a rough guide to the local precision of the profile.

We have applied the new profile reconstruction technique successfully to a typical ECRH

plasma with moderate density, to a set of discharges with electrode biasing, and to a pair of

NBI heated discharges with high density. The reconstructed time evolution of the density

profile in the biasing discharges clearly shows the formation of an edge transport barrier

in response to the biasing. The success of this analysis has prompted the study of such
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behaviour also in other (spontaneous) confinement transitions at TJ-II, providing enhanced

insight into the mechanisms producing such transitions32. The NBI heated discharges were

selected to provide an example of density profiles before and after an L-H transition. The

formation of a particle transport barrier at ρ = 0.74 could be identified with good precision.

No low-order rational surfaces exist at this radial position. This fact is relevant for the study

of the L-H transition mechanism at TJ-II and will be analyzed in more detail in the future.

TJ-II disposes of more profile-relevant diagnostics than the four discussed here. An

overview is provided in Table III. The Lithium beam is discarded, as TJ-II currently em-

ploys Lithium for wall conditioning, thus blinding the diagnostic. A first extension of the

present work would be to incorporate the Heavy Ion Beam Probe (HIBP), that provides

local measurements of the density in the core region. Langmuir probes can provide data in

the edge and Scrape-Off Layer.

In a second phase, the model can be enhanced to consider also the electron temperature

(Te) profile. In this case, a full forward model for Thomson Scattering is available33 to model

the spectrum as obtained by the TS spectrograph. Once Te is modelled, forward modelling

of the Helium beam line emission amplitude ratios is also possible. Te measurements from

Electron Cyclotron Emission (ECE) can be considered, although this diagnostic is limited to

low densities due to cutoff (therefore not suited for NBI heated discharges). The analysis can

be enhanced further by adding information from the Soft X-Ray (SXR) diagnostic, possibly

even allowing recovering some limited information on the effective charge profile, Zeff .

Some of these diagnostics (SXR, bolometry) allow tomographic reconstructions to be

made; so a future extension of the current work may also include, e.g., poloidal dependencies

- this is however not immediate and must be considered a long-term goal.
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TABLE III. Profile information delivered by diagnostics at TJ-II

Diagnostic ne Te Zeff φ

Interferometry X - - -

Reflectometry X - - -

Thomson Scattering X X - -

He beam X X - -

Li beam X - - -

Langmuir probes X X - X

ECE - (only low ne) - -

SXR X X X -

HIBP X - - X
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Appendix A: Reflectometry profile reconstruction

The traditional reconstruction of density profiles from reflectometry data34 is of course

subject to uncertainties due to measurement noise. However, in addition the reconstruction

is subject to a level of ambiguity that is not related to measurement error but to the inte-

gration procedure of the profile reconstruction process, as discussed below. Note that this

Appendix merely provides an analysis of this issue; none of the (approximate) equations of

this Appendix are used for the actual profile reconstruction procedure in the main text of

this paper.

The phase detected by the reflectometer is calculated by Eq. (14), repeated here for

convenience:

φ(f) =
4πf

c

∫ a

rc(f)

η(f, r)dr − π

2
(A1)

where η is defined by Eq. (15). The critical radius rc(f) is the solution of η(f, r) = 0, and

the corresponding critical density is (ω = 2πf):

nc(ω) = ne(rc(ω)) = ε0

(
meω

2/e2 −Bω/e
)
, (A2)

since only the smallest of the two possible solutions is relevant (the first cutoff). For sim-

plicity, the (mild) dependence of η and nc on r via B(r) will be ignored here by taking B

constant; qualitatively, the discussion below is not affected by this dependence. Thus, one

can express η as a function of f and ne (rather than r).

In view of this, it is convenient to rewrite the integral (A1) as an integral over the density,

assuming that the density is a strictly monotonic function of r for the relevant part of the

density profile (the one probed by the reflectometer):

φ(f) = −4πf

c

∫ nc(f)

0

η(f, ne)

(
dne
dr

)−1

dne −
π

2
(A3)

Written this way, the calculation only involves two parameters (f and ne, considering dne/dr

to be a function of ne) instead of three (f , ne, and r). It is seen that the measured phase is

proportional to the mean inverse gradient, weighted by η. Note that knowledge of dne/dr

is sufficient to reconstruct the density profile in the relevant radial range, up to an offset.

Defining G(ne) = −(dne/dr)
−1, and defining η′ as

η′(f, ne) =

 η(f, ne) ne ≤ nc(f)

0 ne > nc(f)
(A4)
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FIG. 16. a) The modified refractive index η′ in the relevant parameter range for TJ-II. b) The

integration kernel H.

one obtains

φ(f) =
4π

c

∫ nmax

0

fη′(f, ne)G(ne)dne −
π

2
(A5)

where nmax = nc(fmax) (at least), and fmax is the maximum frequency of the frequency scan.

For constant magnetic field B (B = 1 T), the modified refractive index η′ is easily evaluated,

and is shown in Fig. 16 in the relevant parameter range.

Recall that the time delay τ(f) measured by the reflectometer is obtained from Eq. (13),

resulting in

τ(f) =
1

2π

dφ(f)

df
=

2

c

∫ nmax

0

d(fη′(ne, f))

df
G(ne)dne (A6)

The kernel of the integral is

H(f, ne) =
d(fη′(f, ne))

df
= η′(f, ne) +

f

2η′(f, ne)

dη′2(f, ne)

df
(A7)

The second term in (A7) is strongly peaked at the critical density (H is shown in Fig. 16,

right), and to first approximation one can set H(f, ne) ' g(f, ne)δ(ne− nc(f)), where g is a

slowly varying function. Effectively, the measured τ(f) is therefore almost proportional to

G(nc(f)), i.e., the inverse density gradient at the critical density. This fact lies at the basis

of the profile reconstruction procedure.
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Sampling the functions discretely, one can rewrite Eq. (A6) as a matrix multiplication:

~τ =
2

c
H ′ ~G (A8)

where ~τ is the vector of time delays, ~G the vector of the inverse density gradient values, and

H ′ is computed by sampling H discretely and multiplying by ∆ne (the sampling interval of

the density vector). Choosing the vectors of equal length so that H ′ is square, the matrix

H ′ turns out to be rank-deficient (the rank being about 90% of its size). Therefore, strictly

speaking, its inverse does not exist and the determination of ~G from ~τ is subject to some

degree of ambiguity: about 10% of the inverse density gradient-eigenvectors are mapped

to time delays ~0 and cannot be recovered from the experimental data. The origin of the

rank-deficiency is the non-linearity of the critical density line nc(f).

To show this graphically, we have decomposed H ′ = USV T using a standard Singular

Value Decomposition. Here, S is a diagonal matrix such that Sii = λi are the singular

values. The columns of the U and V matrices form orthonormal basis vectors (~ui and ~vi,

respectively), the ith column vector corresponding to λi. To visualize the null space, we have

summed the squared basis vectors ~ui(fj) = Uji and ~vi((ne)j) = Vji corresponding to small

singular values (λi ' 0 within computer precision). The result is shown in Fig. 17. Clearly

the null space does not affect the reconstruction below f = 38.7 GHz (or ne = 0.66 · 1019

m−3), but for higher values of the frequency and the density, the density of null space vector

components is continuously increasing, so the difficulty of reconstructing the density profile

unambiguously will increase gradually towards the high end of the range. The traditional

reconstruction method does not take this ambiguity into account, so a profile is reconstructed

that may be affected by such null vectors at high density values, not corresponding to any

significant physical information.

Of course, this situation is slightly modified in the actual experimental situation due to

the additional spatial variation of the magnetic field B (which is, however, small in TJ-II).

Also, the present analysis is ‘ideal’ in the sense that no signal loss or noise is considered; it

merely provides an analysis of the profile reconstruction problem itself. We note that the

issue of ambiguity is elegantly resolved using the Bayesian approach of this paper, as (a)

only forward modelling is used, avoiding the problems associated with matrix inversion or

similar profile reconstruction techniques, and (b) the reflectometry data are complemented

with information from other diagnostics.
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FIG. 17. Left: the null space of the U basis vectors. Right: the null space of the V basis vectors.

Appendix B: The error of cos(φ)

Assume one has a phase φ, distributed uniformly over the interval [0, 2π) (equivalent to

a uniform distribution over the real line). It suffers a small, randomly distributed error

δφ, modeled as a Gaussian random number with mean 0 and standard deviation σ; this

distribution will be denoted by pG(x) = exp(−x2/2σ2)/
√

2πσ2.

The error in cosφ due to the error δφ is simply

δ cosφ = cos(φ+ δφ)− cosφ. (B1)

To first order in the errors, this is:

δ cosφ ' − sinφ · δφ (B2)

Conservation of probability allows computing the distribution of δ cosφ:

pG(δφ)dδφ = p(δ cosφ, φ)dδ cosφ (B3)

where p is the probability distribution of δ cosφ, and all terms must be positive, so that

p(δ cosφ, φ) = pG(δφ)

∣∣∣∣ dδφ

dδ cosφ

∣∣∣∣ ' pG

(
δ cosφ

sinφ

)
1

| sinφ|
(B4)
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Of course, φ is an ignorable variable, so the mean distribution is obtained by averaging out

φ:

p(δ cosφ) =
1

2π

∫ 2π

0

p(δ cosφ, φ)dφ (B5)

with solution

p(δ cosφ) = π−1pG

(
δ cosφ√

2

)
K0

(
δ cosφ√

2

)
(B6)

where K0 is the modified Bessel function of the second kind. The width w of this distribution

(computed by evaluating the second moment, w2 =
∫
x2p(x)dx) is w = σ/

√
2.

Of course, the same result holds for the error in sinφ.
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