11,284 research outputs found

    Single-point velocity distribution in turbulence

    Full text link
    We show that the tails of the single-point velocity probability distribution function (PDF) are generally non-Gaussian in developed turbulence. By using instanton formalism for the Navier-Stokes equation, we establish the relation between the PDF tails of the velocity and those of the external forcing. In particular, we show that a Gaussian random force having correlation scale LL and correlation time τ\tau produces velocity PDF tails lnP(v)v4\ln{\cal P}(v)\propto-v^4 at vvrms,L/τv\gg v_{rms}, L/\tau. For a short-correlated forcing when τL/vrms\tau\ll L/v_{rms} there is an intermediate asymptotics lnP(v)v3\ln {\cal P}(v)\propto-v^3 at L/τvvrmsL/\tau\gg v\gg v_{rms}.Comment: 9 pages, revtex, no figure

    Charged-current inclusive neutrino cross sections in the SuperScaling model including quasielastic, pion production and meson-exchange contributions

    Get PDF
    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where Eν0.8\langle E_\nu \rangle \sim 0.8 GeV, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ\Delta also appear to be playing a role. The results show that processes induced by two-body currents play a minor role at the kinematics considered.Comment: 10 pages, 7 figure

    Integral Field Spectroscopy of the inner kpc of the elliptical galaxy NGC 5044

    Get PDF
    We used Gemini Multi-Object Spectrograph (GMOS) in the Integral Field Unit mode to map the stellar population, emission line flux distributions and gas kinematics in the inner kpc of NGC 5044. From the stellar populations synthesis we found that the continuum emission is dominated by old high metallicity stars (\sim13 Gyr, 2.5Z\odot). Also, its nuclear emission is diluted by a non thermal emission, which we attribute to the presence of a weak active galactic nuclei (AGN). In addition, we report for the first time a broad component (FWHM\sim 3000kms1s^{-1}) in the Hα\alpha emission line in the nuclear region of NGC 5044. By using emission line ratio diagnostic diagrams we found that two dominant ionization processes coexist, while the nuclear region (inner 200 pc) is ionized by a low luminosity AGN, the filamentary structures are consistent with being excited by shocks. The Hα\alpha velocity field shows evidence of a rotating disk, which has a velocity amplitude of \sim240kms1^{-1} at \sim 136 pc from the nucleus. Assuming a Keplerian approach we estimated that the mass inside this radius is 1.9×1091.9\times10^9 MM_{\odot}, which is in agreement with the value obtained through the M-σ\sigma relation, MSMBH=1.8±1.6×109M M_{SMBH}=1.8\pm1.6\times10^{9}M_{\odot}. Modelling the ionized gas velocity field by a rotating disk component plus inflows towards the nucleus along filamentary structures, we obtain a mass inflow rate of \sim0.4 M_\odot. This inflow rate is enough to power the central AGN in NGC 5044.Comment: 16 pages, 12 figures, accepted by MNRA

    Angular momentum distribution of hot gas and implications for disk galaxy formation

    Full text link
    We study the angular momentum profiles both for dark matter and for gas within virialized halos, using a statistical sample of halos drawn from cosmological hydrodynamics simulations. Three simulations have been analyzed, one is the ``non-radiative'' simulation, and the other two have radiative cooling. We find that the gas component on average has a larger spin and contains a smaller fraction of mass with negative angular momentum than its dark matter counterpart in the non-radiative model. As to the cooling models, the gas component shares approximately the same spin parameter as its dark matter counterpart, but the hot gas has a higher spin and is more aligned in angular momentum than dark matter, while the opposite holds for the cold gas. After the mass of negative angular momentum is excluded, the angular momentum profile of the hot gas component approximately follows the universal function originally proposed by Bullock et al. for dark matter, though the shape parameter μ\mu is much larger for hot gas and is comfortably in the range required by observations of disk galaxies. Since disk formation is related to the distribution of hot gas that will cool, our study may explain the fact that the disk component of observed galaxies contains a smaller fraction of low angular momentum material than dark matter in halos.Comment: 30 pages, 12 figures, 4 tables, accepted for publication in Ap

    Experimental approaches to the difference in the Casimir force through the varying optical properties of boundary surface

    Full text link
    We propose two novel experiments on the measurement of the Casimir force acting between a gold coated sphere and semiconductor plates with markedly different charge carrier densities. In the first of these experiments a patterned Si plate is used which consists of two sections of different dopant densities and oscillates in the horizontal direction below a sphere. The measurement scheme in this experiment is differential, i.e., allows the direct high-precision measurement of the difference of the Casimir forces between the sphere and sections of the patterned plate or the difference of the equivalent pressures between Au and patterned parallel plates with static and dynamic techniques, respectively. The second experiment proposes to measure the Casimir force between the same sphere and a VO2{}_2 film which undergoes the insulator-metal phase transition with the increase of temperature. We report the present status of the interferometer based variable temperature apparatus developed to perform both experiments and present the first results on the calibration and sensitivity. The magnitudes of the Casimir forces and pressures in the experimental configurations are calculated using different theoretical approaches to the description of optical and conductivity properties of semiconductors at low frequencies proposed in the literature. It is shown that the suggested experiments will aid in the resolution of theoretical problems arising in the application of the Lifshitz theory at nonzero temperature to real materials. They will also open new opportunities in nanotechnology.Comment: 23 pages of the text, 2 tables, and captions of 12 figures (to appear in Phys. Rev. A

    Dynamic in-network classification for service function chaining ready SDN networks

    Get PDF
    Service Function Chaining (SFC) paradigm consists in steering traffic flows through an ordered set of Service Functions (SFs) so that to realize complex end to end services. SFC architecture introduces all the logical functions that need to be developed in order to provide the required service. The SFC overlay infrastructure can be built on top of many different underlay network technologies. The high flexibility and centrally controlled feature of Software Defined Networking (SDN), make SDN networks to be a perfect underlay to build the SFC architecture. Due to Ternary Content Address Memory (TCAM) limited size, SDN switches have a limitation in the number of flow rules that can be hosted. This constraint is particularly penalizing in case of the SFC classifier function, since it requires to manage a high number of different flows. The limitation imposed by the TCAM size on the SFC classifier can be a bottleneck for the number of SFC requests that the SDN-based SFC architecture can handle. In this paper we define the Dynamic Chain Request Classification Offloading (D-CRCO) problem, as the one of maximizing the number of accepted SFC requests, having the possibility of: i) implement the SFC classifier also in a node that is internal to the SDN-based SFC domain, and ii) install classification rules in a reactive fashion. Furthermore, we propose the Dynamic Nearest Node (DNN) heuristic to solve the D-CRCO problem. Performance evaluation shows that by using DNN heuristic it is possible to triple the number of accepted requests, with respect to existing solutions

    The treatment of the infrared region in perturbative QCD

    Full text link
    We discuss the contribution coming from the infrared region to NLO matrix elements and/or coefficient functions of hard QCD processes. Strictly speaking, this contribution is not known theoretically, since it is beyond perturbative QCD. For DGLAP evolution all the infrared contributions are collected in the phenomenological input parton distribution functions (PDFs), at some relatively low scale Q_0; functions which are obtained from a fit to the `global' data. However dimensional regularization sometimes produces a non-zero result coming from the infrared region. Instead of this conventional regularization treatment, we argue that the proper procedure is to first subtract from the NLO matrix element the contribution already generated at the same order in \alpha_s by the LO DGLAP splitting function convoluted with the LO matrix element. This prescription eliminates the logarithmic infrared divergence, giving a well-defined result which is consistent with the original idea that everything below Q_0 is collected in the PDF input. We quantify the difference between the proposed treatment and the conventional approach using low-mass Drell-Yan production and deep inelastic electron-proton scattering as examples; and discuss the potential impact on the `global' PDF analyses. We present arguments to show that the difference cannot be regarded as simply the use of an alternative factorization scheme.Comment: 15 pages, 5 figures, title changed, text considerably modified to improve presentation, and discussion section enlarge

    Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane

    Get PDF
    [Otros] Dans cette revue, nous présentons des résultats sur l'absorption acoustique parfaite sub-longueur d'onde faisant appel à des métamatériaux acoustiques avec des résonateurs Helmholtz pour différentes configurations. L'absorption parfaite à basse fréquence nécessite une augmentation du nombre d'états aux basses fréquences ainsi que de trouver les bonnes conditions pour une adaptation d'impédance avec le milieu environnant. Si en outre, on souhaite réduire les dimensions géométriques des structures proposées pour des questions pratiques, on peut utiliser des résonateurs locaux judicieusement conçus afin d'attendre une absorption parfaite sub-longueur d'onde. Les résonateurs de Helmholtz se sont révélés de bons candidats en raison de leur accordabilité aisée de la géométrie, donc de la fréquence de résonance, de la fuite d'énergie et des pertes intrinsèques. Lorsqu'ils sont branchés à un guide d'ondes ou à un milieu environnant, ils se comportent comme des systèmes ouverts, avec pertes et résonances caractérisés par leur fuite d'énergie et leurs pertes intrinsèques. L'équilibre entre ces deux aspects représente la condition de couplage critique et donne lieu à un maximum d'absorption d'énergie. Le mécanisme de couplage critique est ici représenté dans le plan de fréquence complexe afin d'interpréter la condition d'adaptation d'impédance. Dans cette revue, nous discutons en détail la possibilité d'obtenir une absorption parfaite par ces conditions de couplage critiques dans différents systèmes tels que la réflexion (à un port), la transmission (à deux ports) ou les systèmes à trois ports.[EN] In this review, we present the results on sub-wavelength perfect acoustic absorption using acoustic metamaterials made of Helmholtz resonators with different setups. Low frequency perfect absorption requires to increase the number of states at low frequencies and finding the good conditions for impedance matching with the background medium. If, in addition, one wishes to reduce the geometric dimensions of the proposed structures for practical issues, one can use properly designed local resonators and achieve subwavelength perfect absorption. Helmholtz resonators have been shown good candidates due to their easy tunability of the geometry, so of the resonance frequency, the energy leakage and the intrinsic losses. When plugged to a waveguide or a surrounding medium they behave as open, lossy and resonant systems characterized by their energy leakage and intrinsic losses. The balance between these two represents the critical coupling condition and gives rise to maximum energy absorption. The critical coupling mechanism is represented here in the complex frequency plane in order to interpret the impedance matching condition. In this review we discuss in detail the possibility to obtain perfect absorption by these critical coupling conditions in different systems such as reflection (one-port), transmission (two-ports) or three-ports systems.The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project and the project HYPERMETA funded under the program Étoiles Montantes of the Région Pays de la Loire. NJ acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICINN) through grant ¿Juan de la Cierva-Incorporación¿ (IJC2018-037897- I). This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology).Romero-García, V.; Jimenez, N.; Theocharis, G.; Achilleos, V.; Merkel, A.; Richoux, O.; Tournat, V.... (2020). Design of acoustic metamaterials made of Helmholtz resonators for perfect absorption by using the complex frequency plane. Comptes Rendus Physique. 21(7-8):713-749. https://doi.org/10.5802/crphys.32S713749217-8[1] Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells, Nat. Mater., Volume 4 (2005) no. 6, pp. 455-459[2] Derode, A.; Roux, P.; Fink, M. Robust acoustic time reversal with high-order multiple scattering, Phys. Rev. Lett., Volume 75 (1995) no. 23, pp. 4206-4209[3] Chong, Y.; Ge, L.; Cao, H.; Stone, A. D. Coherent perfect absorbers: time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010) no. 5, 053901[4] Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), 756[5] Engheta, N.; Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006[6] Romero-García, V.; Hladky-Hennion, A. Fundamentals and Applications of Acoustic Metamaterials: From Seismic to Radio Frequency, ISTE Willey, 2019[7] Craster, R.; Guenneau, S. Acoustic Metamaterials, Springer Series in Materials Science, vol. 166, Spinger, 2013[8] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., Volume 94 (2018), pp. 114-173[9] Mu, D.; Shu, H.; Zhao, L.; An, S. A review of research on seismic metamaterials, Adv. Eng. Mater., Volume 22 (2020) no. 4, 1901148[10] Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y. Y.; Yang, Z.; Chan, C. T.; Sheng, P. Locally resonant sonic materials, Science, Volume 289 (2000) no. 5485, pp. 1734-1736[11] Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus, Nat. Mater., Volume 5 (2006) no. 6, pp. 452-456[12] Acoustic Metamaterials and Phononic Crystals (Deymier, P., ed.), Springer-Verlag, Berlin, Heidelberg, 2013[13] Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons, Sci. Adv., Volume 2 (2016) no. 2, e1501595[14] Yang, M.; Sheng, P. Sound absorption structures: From porous media to acoustic metamaterials, Annu. Rev. Mater. Res., Volume 47 (2017), pp. 83-114[15] Bobrovnitskii, Y. I.; Tomilina, T. Sound absorption and metamaterials: A review, Acoust. Phys., Volume 64 (2018) no. 5, pp. 519-526[16] Lagarrigue, C.; Groby, J.-P.; Tournat, V.; Dazel, O.; Umnova, O. Absorption of sound by porous layers with embedded periodic array of resonant inclusions, J. Acoust. Soc. Am., Volume 134 (2013), pp. 4670-4680[17] Groby, J.-P.; Nennig, B.; Lagarrigue, C.; Brouard, B.; Dazel, O.; Tournat, V. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators, J. Acoust. Soc. Am., Volume 137 (2015) no. 1, pp. 273-280[18] Lagarrigue, C.; Groby, J.-P.; Dazel, O.; Tournat, V. Design of metaporous supercells by genetic algorithm for absorption optimization on a wide frequency band, Appl. Acoust., Volume 102 (2016), pp. 49-54[19] Cai, X.; Guo, Q.; Hu, G.; Yang, J. Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators, Appl. Phys. Lett., Volume 105 (2014) no. 12, 121901[20] Li, Y.; Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness, Appl. Phys. Lett., Volume 108 (2016) no. 6, 063502[21] Wang, Y.; Zhao, H.; Yang, H.; Zhong, J.; Wen, J. A space-coiled acoustic metamaterial with tunable low-frequency sound absorption, Europhys. Lett., Volume 120 (2018) no. 5, 54001[22] Shen, C.; Cummer, S. A. Harnessing multiple internal reflections to design highly absorptive acoustic metasurfaces, Phys. Rev. Appl., Volume 9 (2018) no. 5, 054009[23] Yang, Z.; Mei, J.; Yang, M.; Chan, N.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass, Phys. Rev. Lett., Volume 101 (2008) no. 20, 204301[24] Guo, X.; Gusev, V.; Bertoldi, K.; Tournat, V. Manipulating acoustic wave reflexion by a nonlinear elastic metasurface, J. Appl. Phys., Volume 123 (2018) no. 12, 124901[25] Guo, X.; Gusev, V.; Tournat, V.; Deng, B.; Bertoldi, K. Frequency-doubling effect in acoustic reflection by a nonlinear, architected rotating-square metasurface, Phys. Rev. E, Volume 99 (2019), 052209[26] Bradley, C. E. Acoustic bloch wave propagation in a periodic waveguide Tech. rep., Technical Report of Applied Research Laboratories, Report No. ARL-TR-91-19 (July), The University of Texas at Austin (1991)[27] Sugimoto, N.; Horioka, T. Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators, J. Acoust. Soc. Am., Volume 97 (1995) no. 3, pp. 1446-1459[28] Romero-García, V.; Theocharis, G.; Richoux, O.; Merkel, A.; Tournat, V.; Pagneux, V. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators, Sci. Rep., Volume 6 (2016), 19519[29] Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface with hybrid resonances, Nat. Mater., Volume 13 (2014) no. 9, pp. 873-878[30] Yang, M.; Meng, C.; Fu, C.; Li, Y.; Yang, Z.; Sheng, P. Subwavelength total acoustic absorption with degenerate resonators, Appl. Phys. Lett., Volume 107 (2015) no. 10, 104104[31] Aurégan, Y. Ultra-thin low frequency perfect sound absorber with high ratio of active area, Appl. Phys. Lett., Volume 113 (2018), 201904[32] Groby, J.-P.; Huang, W.; Lardeau, A.; Aurégan, Y. The use of slow waves to design simple sound absorbing materials, J. Appl. Phys., Volume 117 (2015) no. 12, 124903[33] Leroy, V.; Strybulevych, A.; Lanoy, M.; Lemoult, F.; Tourin, A.; Page, J. H. Superabsorption of acoustic waves with bubble metascreens, Phys. Rev. B, Volume 91 (2015), 020301[34] Fernández-Marín, A. A.; Jiménez, N.; Groby, J.-P.; Sánchez-Dehesa, J.; Romero-García, V. Aerogel-based metasurfaces for perfect acoustic energy absorption, Appl. Phys. Lett., Volume 115 (2019), 061901[35] Long, H.; Cheng, Y.; Tao, J.; Liu, X. Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system, Appl. Phys. Lett., Volume 110 (2017) no. 2, 023502[36] Romero-García, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers, J. Acoust. Soc. Am., Volume 139 (2016) no. 6, pp. 3395-3403[37] Jiménez, N.; Huang, W.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption, Appl. Phys. Lett., Volume 109 (2016) no. 12, 121902[38] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound, Phys. Rev. B, Volume 95 (2017), 014205[39] Jiménez, N.; Romero-García, V.; Pagneux, V.; Groby, J.-P. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems, Sci. Rep., Volume 7 (2017) no. 1, 13595[40] Jiménez, N.; Cox, T. J.; Romero-García, V.; Groby, J.-P. Metadiffusers: Deep-subwavelength sound diffusers, Sci. Rep., Volume 7 (2017) no. 1, 5389[41] Jiménez, N.; Romero-García, V.; Groby, J.-P. Perfect absorption of sound by rigidly-backed high-porous materials, Acta Acust. United Acust., Volume 104 (2018) no. 3, pp. 396-409[42] Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V. Control of acoustic absorption in one-dimensional scattering by resonant scatterers, Appl. Phys. Lett., Volume 107 (2015) no. 24, 244102[43] Achilleos, V.; Richoux, O.; Theocharis, G. Coherent perfect absorption induced by the nonlinearity of a Helmholtz resonator, J. Acoust. Soc. Am., Volume 140 (2016), EL94[44] Long, H.; Cheng, Y.; Liu, X. Asymmetric absorber with multiband and broadband for low-frequency sound, Appl. Phys. Lett., Volume 111 (2017) no. 14, 143502[45] Merkel, A.; Romero-García, V.; Groby, J.-P.; Li, J.; Christensen, J. Unidirectional zero sonic reflection in passive pt-symmetric willis media, Phys. Rev. B, Volume 98 (2018), 201102(R)[46] Monsalve, E.; Maurel, A.; Petitjeans, P.; Pagneux, V. Perfect absorption of water waves by linearor nonlinear critical coupling, Appl. Phys. Lett., Volume 114 (2018), 013901[47] Schwan, L.; Umnova, O.; Boutin, C. Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation, Wave Motion, Volume 72 (2017), pp. 154-172[48] Huang, S.; Fang, X.; Wang, X.; Assouar, B.; Cheng, Q.; Li, Y. Acoustic perfect absorbers via spiral metasurfaces with embedded apertures, Appl. Phys. Lett., Volume 113 (2018) no. 23, 233501[49] Elayouch, A.; Addouche, M.; Khelif, A. Extensive tailorability of sound absorption using acoustic metamaterials, J. Appl. Phys., Volume 124 (2018) no. 15, 155103[50] Maurel, A.; Mercier, J.-F.; Pham, K.; Marigo, J.-J.; Ourir, A. Enhanced resonance of sparse arrays of Helmholtz resonators—application to perfect absorption, J. Acoust. Soc. Am., Volume 145 (2019) no. 4, pp. 2552-2560[51] Romero-García, V.; Jiménez, N.; Groby, J.-P.; Merkel, A.; Tournat, V.; Theocharis, G.; Richoux, O.; Pagneux, V. Perfect absorption in mirror-symmetric acoustic metascreens, Phys. Rev. Appl. (2020), 054055[52] Bliokh, K. Y.; Bliokh, Y. P.; Freilikher, V.; Savel’ev, S.; Nori, F. Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys., Volume 80 (2008) no. 4, pp. 1201-1213[53] Richoux, O.; Achilleos, V.; Theocharis, G.; Brouzos, I. Subwavelength interferometric control of absorption in three-port acoustic network, Sci. Rep., Volume 8 (2018) no. 1, 12328[54] Piper, J. R.; Liu, V.; Fan, S. Total absorption by degenrate critical coupling, Appl. Phys. Lett., Volume 104 (2014), 251110[55] Chong, Y.; Ge, L.; Cao, H.; Stone, A. Coherent perfect absorbers: Time-reversed lasers, Phys. Rev. Lett., Volume 105 (2010), 053901[56] Wei, P.; Croënne, C.; Chu, S. T.; Li, J. Symmetrical and anti-symmetrical coherent prefect absorption for acoustic waves, Appl. Phys. Lett., Volume 104 (2014), 121902[57] Groby, J.-P.; Pommier, R.; Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials, J. Acoust. Soc. Am., Volume 139 (2016) no. 4, pp. 1660-1671[58] Luk, T.; Campione, S.; Kim, I.; Feng, S.; Jun, Y.; Liu, S.; Wright, J.; Brener, I.; Catrysse, P.; Fan, S.; Sinclair, M. Directional perfect absorption using deep subwavelength lowpermittivity films, Phys. Rev. B, Volume 90 (2014), 085411[59] Pagneux, V. Trapped modes and edge resonances in acoustics and elasticity, Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism (CISM International Centre for Mechanical Sciences, vol. 547), Springer, Vienna, 2013, pp. 181-223[60] Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape, J. Acoust. Soc. Am., Volume 89 (1991) no. 2, pp. 550-558[61] Theocharis, G.; Richoux, O.; Romero-Garcìa, V.; Merkel, A.; Tournat, V. Limits of slow sound and transparency in lossy locally resonant periodic structures, New J. Phys., Volume 16 (2014), 093017[62] Kergomard, J.; Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae, J. Sound Vib., Volume 114 (1987) no. 3, pp. 465-479[63] Dubos, V.; Kergomard, J.; Khettabi, A.; Dalmont, J.-P.; Keefe, D.; Nederveen, C. Theory of sound propagation in a duct with a branched tube using modal decomposition, Acta Acust. United Acust., Volume 85 (1999) no. 2, pp. 153-169[64] Mechel, F. P. Formulas of Acoustics, Springer Science & Business Media, Springer-Verlag, Heidelberg, 2008[65] Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligth, Cambridge University Press, UK, 1999[66] Zwikker, C.; Kosten, C. Sound Absorbing Materials, Elsevier Publishing Company, Amsterdam, 1949[67] Xu, Q.; Sandhu, S.; Povinelli, M. L.; Shakya, J.; Fan, S.; Lipson, M. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency, Phys. Rev. Lett., Volume 96 (2006), 123901[68] Yang, X.; Yu, M.; Kwong, D.-L.; Wong, C. W. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities, Phys. Rev. Lett., Volume 102 (2009), 173902[69] Boudouti, E. H. E.; Mrabti, T.; Al-Wahsh, H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L. Transmission gaps and Fano resonances in an acoustic waveguide: analytical model, J. Phys.: Condens. Matter, Volume 20 (2008), 255212[70] Santillan, A.; Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators, Phys. Rev. B, Volume 84 (2011), 064394[71] Mouadili, A.; Boudouti, E. H. E.; Soltani, A.; Talbi, A.; Djafari-Rouhani, B.; Akjouj, A.; Haddadi, K. Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model, J. Phys.: Condens. Matter, Volume 26 (2014), 505901[72] Xu, Y.; Li, Y.; Lee, R. K.; Yariv, A. Scattering-theory analysis of waveguide–resonator coupling, Phys. Rev. E, Volume 62 (2000), pp. 7389-7404[73] Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations, Numerical Analysis, Springer, 1978, pp. 144-157[74] Cox, T. J.; D’Antonio, P. Acoustic Absorbers and Diffusers: Theory, Design and Application, CRC Press, 2016[75] Groby, J.-P.; Ogam, E.; De Ryck, L.; Sebaa, N.; Lauriks, W. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients, J. Acoust. Soc. Am., Volume 127 (2010) no. 2, pp. 764-772[76] Tsakmakidis, K. L.; Boardman, A. D.; Hess, O. Trapped rainbow storage of light in metamaterials, Nature, Volume 450 (2007) no. 7168, pp. 397-401[77] Zhu, J.; Chen, Y.; Zhu, X.; Garcia-Vidal, F. J.; Yin, X.; Zhang, W.; Zhang, X. Acoustic rainbow trapping, Sci. Rep., Volume 3 (2013), 1728[78] Romero-Garcia, V.; Picó, R.; Cebrecos, A.; Sanchez-Morcillo, V.; Staliunas, K. Enhancement of sound in chirped sonic crystals, Appl. Phys. Lett., Volume 102 (2013) no. 9, 091906[79] Ni, X.; Wu, Y.; Chen, Z.-G.; Zheng, L.-Y.; Xu, Y.-L.; Nayar, P.; Liu, X.-P.; Lu, M.-H.; Chen, Y.-F. Acoustic rainbow trapping by coiling up space, Sci. Rep., Volume 4 (2014), 7038[80] Colombi, A.; Colquitt, D.; Roux, P.; Guenneau, S.; Craster, R. V. A seismic metamaterial: The resonant metawedge, Sci. Rep., Volume 6 (2016), 27717[81] Jan, A. U.; Porter, R. Transmission and absorption in a waveguide with a metamaterial cavity, J. Acoust. Soc. Am., Volume 144 (2018) no. 6, pp. 3172-318
    corecore