2,244 research outputs found

    Prospectus, September 10, 1986

    Get PDF
    https://spark.parkland.edu/prospectus_1986/1020/thumbnail.jp

    Impact of traffic congestion on spatial access to healthcare services in Nairobi

    Get PDF
    Background: Geographic accessibility is an important determinant of healthcare utilization and is critical for achievement of universal health coverage. Despite the high disease burden and severe traffic congestion in many African cities, few studies have assessed how traffic congestion impacts geographical access to healthcare facilities and to health professionals in these settings. In this study, we assessed the impact of traffic congestion on access to healthcare facilities, and to the healthcare professionals across the healthcare facilities.Methods: Using data on health facilities obtained from the Ministry of Health in Kenya, we mapped 944 primary, 94 secondary and four tertiary healthcare facilities in Nairobi County. We then used traffic probe data to identify areas within a 15-, 30- and 45-min drive from each health facility during peak and off-peak hours and calculated the proportion of the population with access to healthcare in the County. We employed a 2-step floating catchment area model to calculate the ratio of healthcare and healthcare professionals to population during these times.Results: During peak hours, <70% of Nairobi's 4.1 million population was within a 30-min drive from a health facility. This increased to >75% during off-peak hours. In 45 min, the majority of the population had an accessibility index of one health facility accessible to more than 100 people (<0.01) for primary health care facilities, one to 10,000 people for secondary facilities, and two health facilities per 100,000 people for tertiary health facilities. Of people with access to health facilities, a sub-optimal ratio of <4.45 healthcare professionals per 1,000 people was observed in facilities offering primary and secondary healthcare during peak and off-peak hours.Conclusion: Our study shows access to healthcare being negatively impacted by traffic congestion, highlighting the need for multisectoral collaborations between urban planners, health sector and policymakers to optimize health access for the city residents. Additionally, growing availability of traffic probe data in African cities should enable similar analysis and understanding of healthcare access for city residents in other countries on the continent

    Prospectus, April 22, 1987

    Get PDF
    https://spark.parkland.edu/prospectus_1987/1013/thumbnail.jp

    Prospectus, September 3, 1986

    Get PDF
    https://spark.parkland.edu/prospectus_1986/1019/thumbnail.jp

    Modelling seasonal household variation in harvested rainwater availability:a case study in Siaya County, Kenya

    Get PDF
    Rainwater harvesting reliability, the proportion of days annually when rainwater demand is fully met, is challenging to estimate from cross-sectional household surveys that underpin international monitoring. This study investigated the use of a modelling approach that integrates household surveys with gridded precipitation data to evaluate rainwater harvesting reliability, using two local-scale household surveys in rural Siaya County, Kenya as an illustrative case study. We interviewed 234 households, administering a standard questionnaire that also identified the source of household stored drinking water. Logistic mixed effects models estimated stored rainwater availability from household and climatological variables, with random effects accounting for unobserved heterogeneity. Household rainwater availability was significantly associated with seasonality, storage capacity, and access to alternative improved water sources. Most households (95.1%) that consumed rainwater faced insufficient supply of rainwater available for potable needs throughout the year, with intermittencies during the short rains for most households with alternative improved sources. Although not significant, stored rainwater lasts longer for households whose only improved water source was rainwater (301.8 ± 40.2 days) compared to those having multiple improved sources (144.4 ± 63.7 days). Such modelling analysis could enable rainwater harvesting reliability estimation, and thereby national/international monitoring and targeted follow-up fieldwork to support rainwater harvesting

    Prospectus, September 16, 1986

    Get PDF
    https://spark.parkland.edu/prospectus_1986/1021/thumbnail.jp

    Prospectus, November 12, 1986

    Get PDF
    https://spark.parkland.edu/prospectus_1986/1029/thumbnail.jp

    Prospectus, November 19, 1986

    Get PDF
    https://spark.parkland.edu/prospectus_1986/1030/thumbnail.jp

    Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis

    Get PDF
    BackgroundAccess to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household.ObjectivesWe assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type.MethodsWe performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type.ResultsWater quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine.ConclusionsPiped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.CitationShields KF, Bain RE, Cronk R, Wright JA, Bartram J. 2015. Association of supply type with fecal contamination of source water and household stored drinking water in developing countries: a bivariate meta-analysis. Environ Health Perspect 123:1222–1231; http://dx.doi.org/10.1289/ehp.140900
    • …
    corecore