10 research outputs found

    Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis

    Full text link
    Background: Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. Methods: AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. Findings: AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. Interpretation: sAXL appears as a biomarker for early detection of PDAC and PDAC–CP discrimination that could accelerate treatment and improve its dismal prognosis. Funding: This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya. © 2021 The Author(s

    The Genetic Architecture of Parkinson Disease in Spain: Characterizing Population-Specific Risk, Differential Haplotype Structures, and Providing Etiologic Insight

    No full text
    Background: The Iberian Peninsula stands out as having variable levels of population admixture and isolation, making Spain an interesting setting for studying the genetic architecture of neurodegenerative diseases. Objectives: To perform the largest PD genome-wide association study restricted to a single country. Methods: We performed a GWAS for both risk of PD and age at onset in 7,849 Spanish individuals. Further analyses included population-specific risk haplotype assessments, polygenic risk scoring through machine learning, Mendelian randomization of expression, and methylation data to gain insight into disease-associated loci, heritability estimates, genetic correlations, and burden analyses. Results: We identified a novel population-specific genome-wide association study signal at PARK2 associated with age at onset, which was likely dependent on the c.155delA mutation. We replicated four genome-wide independent signals associated with PD risk, including SNCA, LRRK2, KANSL1/MAPT, and HLA-DQB1. A significant trend for smaller risk haplotypes at known loci was found compared to similar studies of non-Spanish origin. Seventeen PD-related genes showed functional consequence by two-sample Mendelian randomization in expression and methylation data sets. Long runs of homozygosity at 28 known genes/loci were found to be enriched in cases versus controls. Conclusions: Our data demonstrate the utility of the Spanish risk haplotype substructure for future fine-mapping efforts, showing how leveraging unique and diverse population histories can benefit genetic studies of complex diseases. The present study points to PARK2 as a major hallmark of PD etiology in Spain.This research was supported, in part, by the Intramural Research Program of the National Institutes of Health (National Institute on Aging, National Institute of Neurological Disorders and Stroke; project numbers: 1ZIA‐NS003154‐03, Z01‐AG000949‐02, and Z01‐ES101986). In addition, this work was supported by the Department of Defense (award W81XWH‐09‐2‐0128), The Michael J Fox Foundation for Parkinson's Research, and the ISCIII Grants PI 15/0878 (Fondos Feder) to V.A. and PI 15/01013 to J,H. This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (PI14/01823, PI16/01575, PI18/01898, [SAF2006‐10126 (2006‐2009), SAF2010‐22329‐C02‐01 (2010‐2012), and SAF2013‐47939‐R (2013‐2018)]), co‐founded by ISCIII (SubdirecciĂłn General de EvaluaciĂłn y Fomento de la InvestigaciĂłn) and by Fondo Europeo de Desarrollo Regional (FEDER), the ConsejerĂ­a de EconomĂ­a, InnovaciĂłn, Ciencia y Empleo de la Junta de AndalucĂ­a (CVI‐02526, CTS‐7685), the ConsejerĂ­a de Salud y Bienestar Social de la Junta de AndalucĂ­a (PI‐0437‐2012, PI‐0471‐2013), the Sociedad Andaluza de NeurologĂ­a, the Jacques and Gloria Gossweiler Foundation, the FundaciĂłn Alicia Koplowitz, and the FundaciĂłn Mutua Madrileña. Pilar GĂłmez‐Garre was supported by the “Miguel Servet” (from ISCIII16 FEDER) and “NicolĂĄs Monardes” (from Andalusian Ministry of Health) programmes. Silvia JesĂșs Maestre was supported by the “Juan RodĂ©s” programme, and Daniel MacĂ­as‐GarcĂ­a was supported by the “RĂ­o Hortega” programme (both from ISCIII‐FEDER). Cristina Tejera Parrado was supported by VPPI‐US from the Universidad de Sevilla. This research has been conducted using samples from the HUVR‐IBiS Biobank (Andalusian Public Health System Biobank and ISCIII‐Red de Biobancos PT13/0010/0056). This work was also supported by the grant PSI2014‐57643 from the Junta de AndalucĂ­a to the CTS‐438 group and a research award from the Andalusian Society of Neurology

    A review on the occurrence of companion vector-borne diseases in pet animals in Latin America

    No full text
    corecore