269 research outputs found

    Substrate control in stereoselective lanthionine biosynthesis.

    Get PDF
    Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a cysteine attack on dehydrated Ser and Thr residues. We demonstrate that several lanthionine synthetases catalyse highly selective anti-additions in which the substrate (and not the enzyme) determines whether the addition occurs from the re or si face. A single point mutation in the peptide substrate completely inverted the stereochemical outcome of the enzymatic modification. Quantum mechanical calculations reproduced the experimentally observed selectivity and suggest that conformational restraints imposed by the amino-acid sequence on the transition states determine the face selectivity of the Michael-type cyclization

    Cycloadditions of cyclohexynes and cyclopentyne.

    Get PDF
    We report the strategic use of cyclohexyne and the more elusive intermediate, cyclopentyne, as a tool for the synthesis of new heterocyclic compounds. Experimental and computational studies of a 3-substituted cyclohexyne are also described. The observed regioselectivities are explained by the distortion/interaction model

    A Minimal, Unstrained S-Allyl Handle for Pre-Targeting Diels-Alder Bioorthogonal Labeling in Live Cells

    Get PDF
    The unstrained S-allyl cysteine amino acid was site-specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5-tetrazines by means of an inverse-electron-demand Diels-Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre-targeting approach. The small size, easy chemical installation, and selective reactivity of the S-allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.China Scholarship Council, FCT Portugal, European Union (Marie-Sklodowska Curie ITN Protein Conjugates; Marie-Sklodowska Curie IEF), MINECO (CTQ2015-70524-R and RYC-2013-14706), Engineering and Physical Sciences Research Council, BiFi (Memento cluster), Royal Society, European Research Counci

    Sequential dual site-selective protein labelling enabled by lysine modification.

    Get PDF
    Methods that allow for chemical site-selective dual protein modification are scarce. Here, we provide proof-of-concept for the orthogonality and compatibility of a method for regioselective lysine modification with strategies for protein modification at cysteine and genetically encoded ketone-tagged amino acids. This sequential, orthogonal approach was applied to albumin and a therapeutic antibody to create functional dual site-selectively labelled proteins
    • …
    corecore