397 research outputs found
Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor
Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorde
TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms
[EN] Objective Hepatocellular carcinoma (HCC) is a prevalent
and aggressive cancer usually arising on a background
of chronic liver injury involving inflammatory and hepatic
regenerative processes. The triggering receptor expressed
on myeloid cells 2 (TREM-2) is predominantly expressed in
hepatic non-parenchymal
cells and inhibits Toll-like
receptor
signalling, protecting the liver from various hepatotoxic
injuries, yet its role in liver cancer is poorly defined. Here,
we investigated the impact of TREM-2 on liver regeneration
and hepatocarcinogenesis.
Design TREM-2 expression was analysed in liver tissues
of two independent cohorts of patients with HCC and
compared with control liver samples. Experimental HCC
and liver regeneration models in wild type and Trem-2-/-
mice, and in vitro studies with hepatic stellate cells (HSCs)
and HCC spheroids were conducted.
Results TREM-2 expression was upregulated in human
HCC tissue, in mouse models of liver regeneration and
HCC. Trem-2-/- mice developed more liver tumours
irrespective of size after diethylnitrosamine (DEN)
administration, displayed exacerbated liver damage,
inflammation, oxidative stress and hepatocyte proliferation.
Administering an antioxidant diet blocked DEN-induced
hepatocarcinogenesis in both genotypes. Similarly,
Trem-2-/- animals developed more and larger tumours in
fibrosis-associated
HCC models. Trem-2-/- livers showed
increased hepatocyte proliferation and inflammation after
partial hepatectomy. Conditioned media from human HSCs
overexpressing TREM-2 inhibited human HCC spheroid
growth in vitro through attenuated Wnt ligand secretion.
Conclusion TREM-2 plays a protective role in
hepatocarcinogenesis via different pleiotropic effects,
suggesting that TREM-2 agonism should be investigated
as it might beneficially impact HCC pathogenesis in a
multifactorial manner.Spanish Ministry of Economy and Competitiveness and ’Instituto de Salud
Carlos III’ grants (MJP (PI14/00399, PI17/00022 and Ramon y Cajal Programme
RYC-2015–17755); JMB (PI12/00380, PI15/01132, PI18/01075, Miguel Servet
Programme CON14/00129 and CPII19/00008) cofinanced by ’Fondo Europeo de
Desarrollo Regional’ (FEDER); CIBERehd: MJP, JMB and LB), Spain; IKERBASQUE,
Basque foundation for Science (MJP and JMB), Spain; ’Diputación Foral de Gipuzkoa’
(MJP: DFG18/114, DFG19/081; JMB: DFG15/010, DFG16/004); BIOEF (Basque
Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/
BD to JMB); Department of Health of the Basque Country (MJP: 2015111100 and
2019111024; JMB: 2017111010), Euskadi RIS3 (JMB: 2016222001, 2017222014,
2018222029, 2019222054, 2020333010) Department of Industry of the Basque
Country (JMB: Elkartek: KK-2020/00008) and AECC Scientific Foundation (JMB).
AE-B
was funded by the University of the Basque Country (UPV/EHU) (PIF2014/11)
and by the short-term
training fellowship Andrew K Burroughs (European
Association for the Study of the Liver, EASL). IL and AA-L
were funded by the
Department of Education, Language Policy and Culture of the Basque Government
(PRE_2016_1_0152 and PRE_2018_1_0184). OS and SK were funded by the
Austrian Science Fund (FWF25801-B22,
FWF-P35168
to OS and L-Mac:
F 6104-B21
to SK). FO and DAM were funded by a UK Medical Research Council programme
Grant MR/R023026/1. DAM was also funded by the CRUK programme grant
C18342/A23390, CRUK/AECC/AIRC Accelerator Award A26813 and the MRC MICA
programme grant MR/R023026/1. JBA is supported by the Danish Medical Research
Council, Danish Cancer Society, Nordisk Foundation, and APM Foundation. CJO’R
and PM-G
are supported by Marie Sklodowska-Curie
Programme and EASL Sheila
Sherlock postdoctoral fellowships
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation.
Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15–17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype–phenotype map than previously anticipated.C.L.R., G.D.S., G.S., J.L.M., K.B., M. Suderman, T.G.R. and T.R.G. are supported by the UK Medical Research Council (MRC) Integrative Epidemiology Unit at the University of Bristol (MC_UU_00011/1, MC_UU_00011/4, MC_UU_00011/5). C.L.R. receives support from a Cancer Research UK Programme grant (no. C18281/A191169). G.H. is funded by the Wellcome Trust and the Royal Society (208806/Z/17/Z). E.H. and J.M. were supported by MRC project grants (nos. MR/K013807/1 and MR/R005176/1 to J.M.) and an MRC Clinical Infrastructure award (no. MR/M008924/1 to J.M.). B.T.H. is supported by the Netherlands CardioVascular Research Initiative (the Dutch Heart Foundation, Dutch Federation of University Medical Centres, the Netherlands Organisation for Health Research and Development, and the Royal Netherlands Academy of Sciences) for the GENIUS project ‘Generating the best evidence-based pharmaceutical targets for atherosclerosis’ (CVON2011-19, CVON2017-20). J.T.B. was supported by the Economic and Social Research Council (grant no. ES/N000404/1). The present study was also supported by JPI HDHL-funded DIMENSION project (administered by the BBSRC UK, grant no. BB/S020845/1 to J.T.B., and by ZonMW the Netherlands, grant no. 529051021 to B.T.H). A.D.B. has been supported by a Wellcome Trust PhD Training Fellowship for Clinicians and the Edinburgh Clinical Academic Track programme (204979/Z/16/Z). J. Klughammer was supported by a DOC fellowship of the Austrian Academy of Sciences. Cohort-specific acknowledgements and funding are presented in the Supplementary Note
The CCP4 suite: integrative software for macromolecular crystallography
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.Jon Agirre is a Royal Society University Research Fellow (UF160039 and URF\R\221006). Mihaela Atanasova is funded by the UK Engineering and Physical Sciences Research Council (EPSRC; EP/R513386/1). Haroldas Bagdonas is funded by The Royal Society (RGF/R1/181006). Jose´ Javier Burgos-Ma´rmol and Daniel J. Rigden are supported by the BBSRC (BB/S007105/1). Robbie P. Joosten is funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871037 (iNEXTDiscovery) and by CCP4. This work was supported by the Medical Research Council as part of United Kingdom Research and Innovation, also known as UK Research and
Innovation: MRC file reference No. MC_UP_A025_1012 to Garib N. Murshudov, which also funded Keitaro Yamashita, Paul Emsley and Fei Long. Robert A. Nicholls is funded by the BBSRC (BB/S007083/1). Soon Wen Hoh is funded by the BBSRC (BB/T012935/1). Kevin D. Cowtan and Paul S. Bond are funded in part by the BBSRC (BB/S005099/1). John Berrisford and Sameer Velankar thank the European Molecular Biology Laboratory–European Bioinformatics Institute, who supported this work. Andrea Thorn was supported in the development of AUSPEX by the German Federal Ministry of Education and Research (05K19WWA and 05K22GU5) and by Deutsche Forschungsgemeinschaft (TH2135/2-1). Petr Kolenko and Martin Maly´ are funded by the MEYS CR (CZ.02.1.01/0.0/0.0/16_019/0000778). Martin Maly´ is funded by the Czech Academy of Sciences (86652036) and CCP4/STFC (521862101). Anastassis Perrakis acknowledges funding from iNEXT (grant No. 653706), iNEXT-Discovery (grant No. 871037), West-Life (grant No. 675858) and EOSC-Life (grant No. 824087) funded by the Horizon 2020 program of the European Commission. Robbie P. Joosten has been the recipient of a Veni grant (722.011.011) and a Vidi grant (723.013.003) from the Netherlands Organization for Scientific Research (NWO). Maarten L. Hekkelman, Robbie P. Joosten and Anastassis Perrakis thank the Research High Performance Computing facility of the Netherlands Cancer Institute for providing and maintaining computation resources and acknowledge the institutional grant from the Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport. Tarik R. Drevon is funded by the BBSRC (BB/S007040/1). Randy J. Read is supported by a Principal Research Fellowship from the Wellcome Trust (grant 209407/Z/17/Z). Atlanta G. Cook is supported by a Wellcome Trust SRF (200898) and a Wellcome Centre for Cell Biology core grant (203149). Isabel Uso´n acknowledges support from STFC-UK/CCP4: ‘Agreement for the integration of methods into the CCP4 software distribution, ARCIMBOLDO_LOW’ and Spanish MICINN/AEI/FEDER/UE (PID2021-128751NB-I00). Pavol Skubak and Navraj Pannu were funded by the NWO Applied Sciences and Engineering Domain and CCP4 (grant Nos. 13337 and 16219). Bernhard Lohkamp was supported by the Ro¨ntgen A˚ ngstro¨m Cluster (grant 349-2013-597). Nicholas Pearce is currently funded by the SciLifeLab and Wallenberg Data Driven Life Science Program (grant KAW 2020.0239) and has previously been funded by a Veni Fellowship (VI.Veni.192.143) from the Dutch Research Council (NWO), a Long-term EMBO fellowship (ALTF 609-2017) and EPSRC grant EP/G037280/1. David M. Lawson received funding from BBSRC Institute Strategic Programme Grants (BB/P012523/1 and BB/P012574/1). Lucrezia Catapano is the recipient of an STFC/CCP4-funded PhD studentship (Agreement No: 7920 S2 2020 007).Peer reviewe
HTLV-1 infection in solid organ transplant donors and recipients in Spain
HTLV-1 infection is a neglected disease, despite infecting 10-15 million people worldwide and severe illnesses develop in 10% of carriers lifelong. Acknowledging a greater risk for developing HTLV-1 associated illnesses due to immunosuppression, screening is being widely considered in the transplantation setting. Herein, we report the experience with universal HTLV testing of donors and recipients of solid organ transplants in a survey conducted in Spain. All hospitals belonging to the Spanish HTLV network were invited to participate in the study. Briefly, HTLV antibody screening was performed retrospectively in all specimens collected from solid organ donors and recipients attended since the year 2008. A total of 5751 individuals were tested for HTLV antibodies at 8 sites. Donors represented 2312 (42.2%), of whom 17 (0.3%) were living kidney donors. The remaining 3439 (59.8%) were recipients. Spaniards represented nearly 80%. Overall, 9 individuals (0.16%) were initially reactive for HTLV antibodies. Six were donors and 3 were recipients. Using confirmatory tests, HTLV-1 could be confirmed in only two donors, one Spaniard and another from Colombia. Both kidneys of the Spaniard were inadvertently transplanted. Subacute myelopathy developed within 1 year in one recipient. The second recipient seroconverted for HTLV-1 but the kidney had to be removed soon due to rejection. Immunosuppression was stopped and 3 years later the patient remains in dialysis but otherwise asymptomatic. The rate of HTLV-1 is low but not negligible in donors/recipients of solid organ transplants in Spain. Universal HTLV screening should be recommended in all donor and recipients of solid organ transplantation in Spain. Evidence is overwhelming for very high virus transmission and increased risk along with the rapid development of subacute myelopathy
CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study
BACKGROUND: Cyclin E1 (CCNE1) is a potential predictive marker and therapeutic target in tubo-ovarian high-grade serous carcinoma (HGSC). Smaller studies have revealed unfavorable associations for CCNE1 amplification and CCNE1 overexpression with survival, but to date no large-scale, histotype-specific validation has been performed. The hypothesis was that high-level amplification of CCNE1 and CCNE1 overexpression, as well as a combination of the two, are linked to shorter overall survival in HGSC. METHODS: Within the Ovarian Tumor Tissue Analysis consortium, amplification status and protein level in 3029 HGSC cases and mRNA expression in 2419 samples were investigated. RESULTS: High-level amplification (>8 copies by chromogenic in situ hybridization) was found in 8.6% of HGSC and overexpression (>60% with at least 5% demonstrating strong intensity by immunohistochemistry) was found in 22.4%. CCNE1 high-level amplification and overexpression both were linked to shorter overall survival in multivariate survival analysis adjusted for age and stage, with hazard stratification by study (hazard ratio [HR], 1.26; 95% CI, 1.08-1.47, p = .034, and HR, 1.18; 95% CI, 1.05-1.32, p = .015, respectively). This was also true for cases with combined high-level amplification/overexpression (HR, 1.26; 95% CI, 1.09-1.47, p = .033). CCNE1 mRNA expression was not associated with overall survival (HR, 1.00 per 1-SD increase; 95% CI, 0.94-1.06; p = .58). CCNE1 high-level amplification is mutually exclusive with the presence of germline BRCA1/2 pathogenic variants and shows an inverse association to RB1 loss. CONCLUSION: This study provides large-scale validation that CCNE1 high-level amplification is associated with shorter survival, supporting its utility as a prognostic biomarker in HGSC
- …