1,010 research outputs found

    Supernova seismology: gravitational wave signatures of rapidly rotating core collapse

    Get PDF
    Gravitational waves (GW) generated during a core-collapse supernova open a window into the heart of the explosion. At core bounce, progenitors with rapid core rotation rates exhibit a characteristic GW signal which can be used to constrain the properties of the core of the progenitor star. We investigate the dynamics of rapidly rotating core collapse, focusing on hydrodynamic waves generated by the core bounce, and the GW spectrum they produce. The centrifugal distortion of the rapidly rotating proto-neutron star (PNS) leads to the generation of axisymmetric quadrupolar oscillations within the PNS and surrounding envelope. Using linear perturbation theory, we estimate the frequencies, amplitudes, damping times, and GW spectra of the oscillations. Our analysis provides a qualitative explanation for several features of the GW spectrum and shows reasonable agreement with non-linear hydrodynamic simulations, although a few discrepancies due to non-linear/rotational effects are evident. The dominant early post-bounce GW signal is produced by the fundamental quadrupolar oscillation mode of the PNS, at a frequency 0.70 ≲ f ≲ 0.80 kHz, whose energy is largely trapped within the PNS and leaks out on a ∼10-ms time-scale. Quasi-radial oscillations are not trapped within the PNS and quickly propagate outwards until they steepen into shocks. Both the PNS structure and Coriolis/centrifugal forces have a strong impact on the GW spectrum, and a detection of the GW signal can therefore be used to constrain progenitor properties

    MEME-LaB : motif analysis in clusters

    Get PDF
    Genome-wide expression analysis can result in large numbers of clusters of co-expressed genes. While there are tools for ab initio discovery of transcription factor binding sites, most do not provide a quick and easy way to study large numbers of clusters. To address this, we introduce a web-tool called MEME-LaB. The tool wraps MEME (an ab initio motif finder), providing an interface for users to input multiple gene clusters, retrieve promoter sequences, run motif finding, and then easily browse and condense the results, facilitating better interpretation of the results from large-scale datasets

    Letter

    Get PDF

    Dark matter-induced collapse of neutron stars: a possible link between fast radio bursts and the missing pulsar problem

    Get PDF
    Fast radio bursts (FRBs) are an emerging class of short and bright radio transients whose sources remain enigmatic. Within the Galactic Centre, the non-detection of pulsars within the inner ∼10 pc has created a missing pulsar problem that has intensified with time. With all reserve, we advance the notion that the two problems could be linked by a common solution: the collapse of neutron stars (NS) due to capture and sedimentation of dark matter (DM) within their cores. Bramante & Linden showed that certain DM properties allow for rapid NS collapse within the high DM density environments near galactic centres while permitting NS survival elsewhere. Each DM-induced collapse could generate an FRB as the NS magnetosphere is suddenly expelled. This scenario could explain several features of FRBs: their short time scales, large energies, locally produced scattering tails, and high event rates. We predict that FRBs are localized to galactic centres, and that our own galactic centre harbours a large population of NS-mass (M ∼ 1.4 M⊙) black holes. The DM-induced collapse scenario is intrinsically unlikely because it can only occur in a small region of allowable DM parameter space. However, if observed to occur, it would place tight constraints on DM properties

    Conserved noncoding sequences highlight shared components of regulatory networks in dicotyledonous plants

    Get PDF
    Conserved noncoding sequences (CNSs) in DNA are reliable pointers to regulatory elements controlling gene expression. Using a comparative genomics approach with four dicotyledonous plant species (Arabidopsis thaliana, papaya [Carica papaya], poplar [Populus trichocarpa], and grape [Vitis vinifera]), we detected hundreds of CNSs upstream of Arabidopsis genes. Distinct positioning, length, and enrichment for transcription factor binding sites suggest these CNSs play a functional role in transcriptional regulation. The enrichment of transcription factors within the set of genes associated with CNS is consistent with the hypothesis that together they form part of a conserved transcriptional network whose function is to regulate other transcription factors and control development. We identified a set of promoters where regulatory mechanisms are likely to be shared between the model organism Arabidopsis and other dicots, providing areas of focus for further research

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence
    • …
    corecore