42 research outputs found

    Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure

    Get PDF
    In natural environments, the aquatic organisms are exposed to complex mixtures of chemicals which may originate from natural sources or from anthropogenic activities. In this context, the aim of the study was to assess the potential effects that might occur when aquatic organisms are simultaneously exposed to multiple chemicals. For that, we have studied the acute effects of cadmium (0.2 μg L−1), nickel (10 μg L−1) and deltamethrin (2 μg L−1) as individual toxicants and as mixture on the behavioral responses, oxidative stress (SOD and GPx), body electrolytes and trace metals profiles of zebrafish (Danio rerio). So far the scientific literature did not report about the combined effects of pesticides and toxic metals on zebrafish behavior using a 3D tracking system. Compared with other studies, in the present paper we investigated the acute effects of two heavy metals associated with a pesticide on zebrafish, in the range of environmentally relevant concentrations. Thus, the environmental concentrations of cadmium and nickel in three rivers affected by urban activities and one river with protected areas as background control were measured. The observations that resulted in our study demonstrated that deltamethrin toxicity was significantly decreased in some of the behavioral variables and oxidative stress when combined with Cdsingle bondNi mixture. Consequently, our study supports previous works concerning the combined toxicity of environmental chemicals since their simultaneous presence in the aqueous environment may lead to higher or lower toxicological effects on biota than those reported from a single pollutant. Therefore, the evaluation of toxic effects of a single contaminant does not offer a realistic estimate of its impact against aqueous ecosystems. This study also supports the idea that the interactions between different chemical compounds which do not exceed the maximum permitted limits in environment may have benefits for aquatic life forms or be more toxic

    Band-gap engineering of zirconia by nitrogen doping in reactive HiPIMS: a step forward in developing innovative technologies for photocatalysts synthesis

    Get PDF
    In the global context of climate change and carbon neutrality, this work proposes a strategy to improve the light absorption of photocatalytic water-splitting materials into the visible spectrum by anion doping. In this framework, reactive high power impulse magnetron sputtering (HiPIMS) of a pure Zr target in Ar/N2/O2 gas mixture was used for the deposition of crystalline zirconium oxynitride (ZrO2-xNx) thin films with variable nitrogen doping concentration and energy band-gap. The nitrogen content into these films was controlled by the discharge pulsing frequency, which controls the target surface poisoning and peak discharge current. The role of the nitrogen doping on the optical, structural, and photocatalytic properties of ZrO2-xNx films was investigated. UV-Vis-NIR spectroscopy was employed to investigate the optical properties and to assess the energy band-gap. Surface chemical analysis was performed using X-ray photoelectron spectroscopy, while structural analysis was carried out by X-ray diffraction. The increase in the pulse repetition frequency determined a build-up in the nitrogen content of the deposited ZrO2-xNx thin films from ∼10 to ∼25 at.%. This leads to a narrowing of the optical band-gap energy from 3.43 to 2.20 eV and endorses efficient absorption of visible light. Owing to its narrow bandgap, ZrO2-xNx thin films obtained by reactive HiPIMS can be used as visible light-driven photocatalyst. For the selected processing conditions (pulsing configuration and gas composition), it was found that reactive HiPIMS can suppress the hysteresis effect for a wide range of frequencies, leading to a stable deposition process with a smooth transition from compound to metal-sputtering mode

    Vitamin C Attenuates Oxidative Stress and Behavioral Abnormalities Triggered by Fipronil and Pyriproxyfen Insecticide Chronic Exposure on Zebrafish Juvenile.

    Get PDF
    Chronic exposure to synthetic insecticides in the early life of a child can lead to a series of disorders. Several causes as parental age, maternal smoking, birth complications, and exposure to toxins such as insecticides on childhood can lead to Autism spectrum disorder (ASD) occurrence. The aim of this study was to evaluate the potential protective role of vitamin C (Vit. C) from children’s supplements after 14 days chronic exposure to insecticide mixture fipronil (Fip) + pyriproxyfen (Pyr) on juvenile zebrafish for swimming performances, social behavior and oxidative stress associated with ASD model. Juvenile (14–17 mm) wild-type AB zebrafish (Danio rerio) (45 days) were exposed to relevant concentrations: vit. C (25 µg L−1), Fip (600 µg L−1/1.372 μM) + Pyr (600 µg L−1/1.89 μM), and [Fip (600 µg L−1/1.372 μM) + Pyr (600 µg L−1 /1.89 μM)] + vit. C (25 µg L−1). Our results showed that insecticides can disturb the social behavior of zebrafish during 14 days of the administration, decreased the swimming performances, and elevated the oxidative stress biomarkers of SOD (superoxide dismutase), GPx (glutathione peroxidase), and MDA (malondialdehyde). The vitamin C supplement significantly attenuated the neurotoxicity of insecticide mixture and oxidative stress. This study provides possible in vivo evidence to show that vitamin C supplements could attenuate oxidative stress and brain damage of fipronil and pyriproxyfen insecticide chronic exposure on zebrafish juvenile

    Assessing the Neurotoxicity of a Sub-Optimal Dose of Rotenone in Zebrafish (Danio rerio) and the Possible Neuroactive Potential of Valproic Acid, Combination of Levodopa and Carbidopa, and Lactic Acid Bacteria Strains

    Get PDF
    first_page settings Order Article Reprints Open AccessArticle Assessing the Neurotoxicity of a Sub-Optimal Dose of Rotenone in Zebrafish (Danio rerio) and the Possible Neuroactive Potential of Valproic Acid, Combination of Levodopa and Carbidopa, and Lactic Acid Bacteria Strains by Ovidiu-Dumitru Ilie 1,† [ORCID] , Raluca Duta 1, Ioana-Miruna Balmus 2,3, Alexandra Savuca 4 [ORCID] , Adriana Petrovici 5 [ORCID] , Ilinca-Bianca Nita 6, Lucian-Mihai Antoci 7, Roxana Jijie 8,† [ORCID] , Cosmin-Teodor Mihai 9 [ORCID] , Alin Ciobica 1,*, Mircea Nicoara 1,4 [ORCID] , Roxana Popescu 7,10 [ORCID] , Romeo Dobrin 11,* [ORCID] , Carmen Solcan 5,* [ORCID] , Anca Trifan 12,13 [ORCID] , Carol Stanciu 12,13 and Bogdan Doroftei 6 [ORCID] 1 Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania 2 Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700506 Iasi, Romania 3 Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, 20A, 700506 Iasi, Romania 4 Doctoral School of Geosciences, Faculty of Geography-Geology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania 5 Department of Molecular Biology, Histology and Embryology, Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, no 3, 700490 Iasi, Romania 6 Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania 7 Department of Medical Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania 8 Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Inderdisciplinary Research, “Alexandru Ioan Cuza” University, Carol I Avenue, no 11, 700506 Iasi, Romania 9 Advanced Research and Development Center for Experimental Medicine (CEMEX), University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania 10 Department of Medical Genetics, “Saint Mary” Emergency Children’s Hospital, Vasile Lupu Street, no 62, 700309 Iasi, Romania add Show full affiliation list * Authors to whom correspondence should be addressed. † These authors equally contributed to this work. Antioxidants 2022, 11(10), 2040; https://doi.org/10.3390/antiox11102040 Received: 2 September 2022 / Revised: 3 October 2022 / Accepted: 13 October 2022 / Published: 17 October 2022 (This article belongs to the Special Issue Oxidative Stress and Neuroinflammation in Neurological and Neurodegenerative Disorders) Download Browse Figures Review Reports Versions Notes Abstract Parkinson’s disease (PD) is an enigmatic neurodegenerative disorder that is currently the subject of extensive research approaches aiming at deepening the understanding of its etiopathophysiology. Recent data suggest that distinct compounds used either as anticonvulsants or agents usually used as dopaminergic agonists or supplements consisting of live active lactic acid bacteria strains might alleviate and improve PD-related phenotypes. This is why we aimed to elucidate how the administration of rotenone (ROT) disrupts homeostasis and the possible neuroactive potential of valproic acid (VPA), antiparkinsonian agents (levodopa and carbidopa – LEV+CARB), and a mixture of six Lactobacillus and three Bifidobacterium species (PROBIO) might re-establish the optimal internal parameters. ROT causes significant changes in the central nervous system (CNS), notably reduced neurogenesis and angiogenesis, by triggering apoptosis, reflected by the increased expression of PARKIN and PINK1 gene(s), low brain dopamine (DA) levels, and as opposed to LRRK2 and SNCA compared with healthy zebrafish. VPA, LEV/CARB, and PROBIO sustain neurogenesis and angiogenesis, manifesting a neuroprotective role in diminishing the effect of ROT in zebrafish. Interestingly, none of the tested compounds influenced oxidative stress (OS), as reflected by the level of malondialdehyde (MDA) level and superoxide dismutase (SOD) enzymatic activity revealed in non-ROT-exposed zebrafish. Overall, the selected concentrations were enough to trigger particular behavioral patterns as reflected by our parameters of interest (swimming distance (mm), velocity (mm/s), and freezing episodes (s)), but sequential testing is mandatory to decipher whether they exert an inhibitory role following ROT exposure. In this way, we further offer data into how ROT may trigger a PD-related phenotype and the possible beneficial role of VPA, LEV+CARB, and PROBIO in re-establishing homeostasis in Danio rerio

    Préparation et caractérisation de nanostructures complexes à l’interface avec le milieu biologique

    No full text
    L’augmentation des infections causées par des pathogènes résistants aux médicaments est devenue un problème de santé majeur dans le monde entier qui impose le développement de nouvelles stratégies destinées à empêcher la formation de biofilms et à éliminer les bactéries. Dans ce contexte, l’objectif de cette thèse a été la préparation de nanostructures complexes pour contrôler l’adhérence des cellules à des surfaces et inactiver les bactéries pathogènes. Ainsi, nous proposons différentes approches qui consistent en l’utilisation de : i) une couche micro-structurée de polystyrène polymérisé à l’aide d’un plasma (pPS), ii) la thérapie photodynamique à base de nanoparticules hybrides activées par un rayon laser dans le proche infrarouge (NIR) et iii) des nanoparticules de carbone fonctionnalisées par l’ampicilline, comme solutions possibles pour éliminer les bactéries.The increase of infections by multi-drug resistant pathogens has become an important worldwide healthcare issue that requires the development of new strategies to prevent biofilm formation and to kill bacteria. In this context, the aim of this thesis was the design of complex nano-structures to control cells adhesion to surfaces and to inactivate pathogenic bacteria. To this end, we propose different strategies relying on the use of i) micro-structured plasma polymerized styrene (pPS) films, ii) particle-based photodynamic therapy combined with a pulsed laser in the near infrared (NIR) region and iii) ampicillin-functionalized, fluorescent carbon dots (CDs) as possible solutions for bacterial killing. Firstly, we performed a detail characterization of pPS films used as substrates to study the behavior of biological systems

    Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures

    No full text
    International audienceA wide range of biomedical materials have been proposed to meet the different needs for controlled oral or intravenous drug delivery. The advantages of oral delivery such as self-administration of a predetermined drug dose at defined time intervals makes it the most convenient means for the delivery of small molecular drugs. It fails however to delivery therapeutic macromolecules due to rapid degradation in the stomach and size-limited transport across the epithelium. The primary mode of administration of macromolecules is presently via injection. This administration mode is not without limitations, as the invasive nature of injections elicits pain and decreases patients' compliance. Alternative routes for drug delivery have been looked for, one being the skin. Delivery of drugs via the skin is based on the therapeutics penetrating the stratum corneum with the advantage of overcoming first-pass metabolism of drugs, to deliver drugs with a short-half-life time more easily and to eliminate frequent administrations to maintain constant drug delivery. The transdermal market still remains limited to a narrow range of drugs. The low permeability of the SC to water-soluble and macromolecular drugs poses significant challenges to transdermal administering via passive diffusion through the skin, as is the case for all topically administered drug formulations intended to bring the therapeutic into the general circulation. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to the integration of skin enhancers into pharmaceutical formulations, nanoparticles based on lipid carrier have been widely considered and reviewed. While being briefly reviewed here, the main focus of this article is on current advancements using polymeric and metallic nanoparticles. Next to these passive technologies, the handful of active technologies for local and systemic transdermal drug delivery will be discussed and put into perspective. While passive approaches dominate the literature and the transdermal market, active delivery patches based on microneedles or iontophoresis approaches have shown great promise for transdermal drug delivery and have entered the market, in the last decade. This review gives an overall idea of the current activities in this field
    corecore