12 research outputs found

    Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus

    No full text
    International audienceIn the hippocampus, a functional role of dopa-mine D1 receptors (D1R) in synaptic plasticity and memory processes has been suggested by electrophysiological and pharmacological studies. However, comprehension of their function remains elusive due to the lack of knowledge on the precise localization of D1R expression among the diversity of interneuron populations. Using BAC trans-genic mice expressing enhanced green fluorescent protein under the control of D1R promoter, we examined the molecular identity of D1R-containing neurons within the CA1 subfield of the dorsal hippocampus. In agreement with previous findings, our analysis revealed that these neurons are essentially GABAergic interneurons, which express several neurochemical markers, including calcium-binding proteins, neuropeptides, and receptors among others. Finally, by using different tools comprising cell type-specific isolation of mRNAs bound to tagged-ribosomes, we provide solid data indicating that D1R is present in a large proportion of interneurons expressing dopamine D2 receptors. Altogether, our study indicates that D1Rs are expressed by different classes of interneurons in all layers examined and not by pyramidal cells, suggesting that CA1 D1R mostly acts via modulation of GABAergic interneurons

    Cell Type-Specific mRNA Dysregulation in Hippocampal CA1 Pyramidal Neurons of the Fragile X Syndrome Mouse Model

    No full text
    Fragile X syndrome (FXS) is a genetic disorder due to the silencing of the Fmr1 gene, causing intellectual disability, seizures, hyperactivity, and social anxiety. All these symptoms result from the loss of expression of the RNA binding protein fragile X mental retardation protein (FMRP), which alters the neurodevelopmental program to abnormal wiring of specific circuits. Aberrant mRNAs translation associated with the loss of Fmr1 product is widely suspected to be in part the cause of FXS. However, precise gene expression changes involved in this disorder have yet to be defined. The objective of this study was to identify the set of mistranslated mRNAs that could contribute to neurological deficits in FXS. We used the RiboTag approach and RNA sequencing to provide an exhaustive listing of genes whose mRNAs are differentially translated in hippocampal CA1 pyramidal neurons as the integrative result of FMRP loss and subsequent neurodevelopmental adaptations. Among genes differentially regulated between adult WT and Fmr1−/y mice, we found enrichment in FMRP-binders but also a majority of non-FMRP-binders. Interestingly, both up- and down-regulation of specific gene expression is relevant to fully understand the molecular deficiencies triggering FXS. More importantly, functional genomic analysis highlighted the importance of genes involved in neuronal connectivity. Among them, we show that Klk8 altered expression participates in the abnormal hippocampal dendritic spine maturation observed in a mouse model of FXS

    Ribosomal Protein S6 Phosphorylation Is Involved in Novelty-Induced Locomotion, Synaptic Plasticity and mRNA Translation

    No full text
    The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis

    Chronic centrosome amplification without tumorigenesis

    No full text
    Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase-mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation

    The mGlu7 receptor provides protective effects against epileptogenesis and epileptic seizures

    No full text
    International audienceFinding new targets to control or reduce seizure activity is essential to improve the management of epileptic patients. We hypothesized that activation of the pre-synaptic and inhibitory metabotropic glutamate receptor type 7 (mGlu7) reduces spontaneous seizures. We tested LSP2-9166, a recently developed mGlu7/4 agonist with unprecedented potency on mGlu7 receptors, in two paradigms of epileptogenesis. In a model of chemically induced epileptogenesis (pentylenetetrazole systemic injection), LSP2-9166 induces an anti-epileptogenic effect rarely observed in preclinical studies. In particular, we found a bidirectional modulation of seizure progression by mGlu4 and mGlu7 receptors, the latter preventing kindling. In the intra-hippocampal injection of kainic acid mouse model that mimics the human mesial temporal lobe epilepsy, we found that LSP2-9166 reduces seizure frequency and hippocampal sclerosis. LSP2-9166 also acts as an anti-seizure drug on established seizures in both models tested. Specific modulation of the mGlu7 receptor could represent a novel approach to reduce pathological network remodeling

    Progastrin production transitions from Bmi1+/Prox1+ to Lgr5high cells during early intestinal tumorigenesis

    No full text
    International audienceProgastrin is an unprocessed soluble peptide precursor with a well-described tumor-promoting role in colorectal cancer. It is expressed at small levels in the healthy intestinal mucosa, and its expression is enhanced at early stages of intestinal tumor development, with high levels of this peptide in hyperplastic intestinal polyps being associated with poor neoplasm-free survival in patients. Yet, the precise type of progastrin-producing cells in the healthy intestinal mucosa and in early adenomas remains unclear. Here, we used a combination of immunostaining, RNAscope labelling and retrospective analysis of single cell RNAseq results to demonstrate that progastrin is produced within intestinal crypts by a subset of Bmi1+/Prox1+/LGR5low endocrine cells, previously shown to act as replacement stem cells in case of mucosal injury. In contrast, our findings indicate that intestinal stem cells, specified by expression of the Wnt signaling target LGR5, become the main source of progastrin production in early mouse and human intestinal adenomas. Collectively our results suggest that the previously identified feed-forward mechanisms between progastrin and Wnt signaling is a hallmark of early neoplastic transformation in mouse and human colonic adenomas

    CD44v6 Defines a New Population of Circulating Tumor Cells Not Expressing EpCAM

    Get PDF
    International audienceCirculating tumor cells (CTCs) are promising diagnostic and prognostic tools for clinical use. In several cancers, including colorectal and breast, the CTC load has been associated with a therapeutic response as well as progression-free and overall survival. However, counting and isolating CTCs remains sub-optimal because they are currently largely identified by epithelial markers such as EpCAM. New, complementary CTC surface markers are therefore urgently needed. We previously demonstrated that a splice variant of CD44, CD44 variable alternative exon 6 (CD44v6), is highly and specifically expressed by CTC cell lines derived from blood samples in colorectal cancer (CRC) patients. Two different approaches-immune detection coupled with magnetic beads and fluorescence-activated cell sorting-were optimized to purify CTCs from patient blood samples based on high expressions of CD44v6. We revealed the potential of the CD44v6 as a complementary marker to EpCAM to detect and purify CTCs in colorectal cancer blood samples. Furthermore, this marker is not restricted to colorectal cancer since CD44v6 is also expressed on CTCs from breast cancer patients. Overall, these results strongly suggest that CD44v6 could be useful to enumerate and purify CTCs from cancers of different origins, paving the way to more efficacious combined markers that encompass CTC heterogeneity

    CD44v6 Defines a New Population of Circulating Tumor Cells Not Expressing EpCAM

    Get PDF
    International audienceCirculating tumor cells (CTCs) are promising diagnostic and prognostic tools for clinical use. In several cancers, including colorectal and breast, the CTC load has been associated with a therapeutic response as well as progression-free and overall survival. However, counting and isolating CTCs remains sub-optimal because they are currently largely identified by epithelial markers such as EpCAM. New, complementary CTC surface markers are therefore urgently needed. We previously demonstrated that a splice variant of CD44, CD44 variable alternative exon 6 (CD44v6), is highly and specifically expressed by CTC cell lines derived from blood samples in colorectal cancer (CRC) patients. Two different approaches—immune detection coupled with magnetic beads and fluorescence-activated cell sorting—were optimized to purify CTCs from patient blood samples based on high expressions of CD44v6. We revealed the potential of the CD44v6 as a complementary marker to EpCAM to detect and purify CTCs in colorectal cancer blood samples. Furthermore, this marker is not restricted to colorectal cancer since CD44v6 is also expressed on CTCs from breast cancer patients. Overall, these results strongly suggest that CD44v6 could be useful to enumerate and purify CTCs from cancers of different origins, paving the way to more efficacious combined markers that encompass CTC heterogeneity
    corecore