314 research outputs found

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Design of a new TDR probe to measure water content and electrical conductivity in highly saline soils

    No full text
    Purpose: The inappropriate irrigation is accelerating the soil salinization in western irrigation districts of China. The amelioration of salinized land must be based on large amount of water content and salinity data. Plastic coated TDR has been designed to measure water content accurately in highly saline soil, but the soil bulk electrical conductivity cannot be measured due to the coated materials. In order to measure the volumetric water content and bulk electrical conductivity in highly saline soils at the same time, a parallel three-wire TDR probe with central rod coated which was used to measure water content and a triangle three-wire TDR probe which was used to measure electrical conductivity were integrated in one probe with four rods and one slide switch. Materials and methods: The influence of angle in triangle three-wire TDR probe and the non-working rod on water content or electrical conductivity measurement were fully discussed through HFSS simulation and NaCl solution test. In the soil column experiment, four levels of salinity, 0.2, 0.4, 0.6, and 1.0% were set, the soil water content decreased from 30% in mass through the evaporation and measured by TDR and electronic balance. Then the probe was calibrated by model of Topp and Evett with these data. Results and discussion: The results show that probe has the largest EPA (polarization degree index) in angle from 97° to 138°; the non-working rod will enhance the EPA during this angle range and the four-wire probe with angle of 120° is optimal; the PVC is a better insulated material which can improve the effective salinity scope; the Evett model could improve the water content measurement greatly especially in soil with higher salinity. Conclusions: This new four-wire insulated probe can be applied as a beneficial use to monitor the moisture and electrical conductivity in highly saline soils

    Constraining Parameter Uncertainty in Simulations of Water and Heat Dynamics in Seasonally Frozen Soil Using Limited Observed Data

    No full text
    Water and energy processes in frozen soils are important for better understanding hydrologic processes and water resources management in cold regions. To investigate the water and energy balance in seasonally frozen soils, CoupModel combined with the generalized likelihood uncertainty estimation (GLUE) method was used. Simulation work on water and heat processes in frozen soil in northern China during the 2012/2013 winter was conducted. Ensemble simulations through the Monte Carlo sampling method were generated for uncertainty analysis. Behavioral simulations were selected based on combinations of multiple model performance index criteria with respect to simulated soil water and temperature at four depths (5 cm, 15 cm, 25 cm, and 35 cm). Posterior distributions for parameters related to soil hydraulic, radiation processes, and heat transport indicated that uncertainties in both input and model structures could influence model performance in modeling water and heat processes in seasonally frozen soils. Seasonal courses in water and energy partitioning were obvious during the winter. Within the day-cycle, soil evaporation/condensation and energy distributions were well captured and clarified as an important phenomenon in the dynamics of the energy balance system. The combination of the CoupModel simulations with the uncertainty-based calibration method provides a way of understanding the seasonal courses of hydrology and energy processes in cold regions with limited data. Additional measurements may be used to further reduce the uncertainty of regulating factors during the different stages of freezing–thawing

    Coupled water transport and heat flux in seasonally frozen soils : uncertainties identification in multi-site calibration

    No full text
    The modeling of seasonally frozen soils is significant for understanding the hydrological process in cold regions. The water and heat transports of two seasonally frozen sites in northern China were simulated with the process-oriented CoupModel, and a more efficient Monte Carlo based method was employed to identify the uncertainties in multi-site calibration. Results showed that water and heat measured at different sites could be explained by 15 merged parameters including FreezepointFWi (d1), EquilAdjustPsi (ψeg), AlbedoKExp (ka), RoughLBareSoilMom (zM) etc. with common ranges to some extent and three parameters MinimumCondValue (kmin,uc), WindLessExchangeSoil (ra,max-1), and SThermalCondCoef (sk) related to soil hydraulic conductivity, surface aerodynamic resistance and snow thermal conductivity respectively were identified to be site-dependent with site-specific ranges. The promotion in performance indices of interest variables indicated that the proposed systematic method had the potential to improve the multi-site simulation of heat and water in frozen soils based on CoupModel. However, the range ratios and posterior distributions of the merged parameters indicated the model structural uncertainty in CoupModel. And the comparison of the simulated variables between two sites demonstrated that the model structure uncertainty originated from the lack of consideration for the detailed processes related to ice cover and freezing point depression induced by soil solute. More detailed information on study sites as well as consideration of more detailed processes in frozen soil water-energy balance will expand the scope of model application in cold regions

    Simulation of dynamical interactions between soil freezing/thawing and salinization for improving water management in cold/arid agricultural region

    No full text
    In cold/arid agricultural regions seasonal freezing/thawing of soils can result in soil salinization in winter; therefore, it is crucial to understand the mechanisms behind soil salinization during winter for better water management in agriculture. In Hetao Irrigation District of Inner Mongolia, northern China, we used the CoupModel (version 5) considering dynamical impacts of salt on soil freezing point to simulate soil salt dynamics and soil freezing/thawing in three winters during 2012–2015. The simulated soil temperature at different depths was improved by ~10% with respect to the Nash-Sutcliffe coefficient NSE R2 when dynamical salt impact on freezing point was taken into accounted. Simulations revealed that ice coverage on soil surface as well as water stored in drainage ditches during winter cause more severe salinization in spring due to improper AI (Autumn Irrigation) practices combining poor drainage systems. A new AI practice with earlier irrigation date (i.e. 10 d earlier than 2012/2013 winter regulation), longer irrigation period (i.e. 7 d instead of 3 d), but with less irrigation water (reduced by 20% from 2012/2013 winter regulation) was then proposed. The new AI practice can control groundwater level and salt accumulation better during winters. Our results highlight the importance of combining detailed field irrigation tests with a process-based model accounting for interactions between soil freezing/thawing and salinization to improve water management efficiency in cold/arid agricultural regions

    Comparative Study of Anti-Corrosion Properties of Different Types of Press-Hardened Steels

    No full text
    Hot stamping (or press hardening) is a new technology that is widely used in the production of advanced high-strength steel parts for automotive applications. Electrochemical measurements, including potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), and accelerated corrosion tests (the neutral salt spray test and periodic immersion test) were conducted on press-hardened samples produced from uncoated (cold-rolled and cold strip production (CSP) hot-rolled) and Al–Si-coated press-hardened steels to elucidate their distinct anti-corrosion mechanisms. The cross-sectional micromorphology and element distribution of three types of press-hardened steels after a neutral salt spray test were observed using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDAX). The corrosion resistance of Al–Si-coated press-hardened steel was found to be significantly diminished following the hot stamping process due to the presence of microcracks and elevated iron content in the coating subsequent to austenitizing heat treatment. On the other hand, the corrosion resistance of uncoated press-hardened sheets produced from cold-rolled and CSP hot-rolled press-hardened steel was found to be proximal due to their nearly identical composition and microstructure (fully martensite) after the hot stamping process. Considering the high efficiency and energy-saving properties of hot-rolled press-hardened steel, it holds the potential to replace cold-rolled and even aluminum–silicon-coated press-hardened steel in automobile manufacturing
    • 

    corecore