4 research outputs found

    Cathepsin B-Mediated NLRP3 Inflammasome Formation and Activation in Angiotensin II -Induced Hypertensive Mice: Role of Macrophage Digestion Dysfunction

    Get PDF
    Background/Aims: Angiotensin II (Ang II) is an octapeptide hormone that plays a significant role in mediating hypertension. Although hypertension is considered a chronic inflammatory disease, the molecular basis of the sterile inflammatory response involved in hypertension remains unclear. Methods: We investigated the role of macrophage NLRP3 inflammasomes in engulfing and digesting microbes, a key macrophage function, and in early onset of hypertension-associated macrophage injury using biochemical analyses, gene silencing, molecular biotechnology, immunofluorescence, and microbiology. Results: Ang II stimulation decreased nitric oxide (NO) release and macrophage digestion in cultured THP-1 cells and markedly increased NLRP3 inflammasome formation and activation. NO release and macrophage digestion were restored by NLRP3 inflammasome inhibition with isoliquiritigenin and gene silencing. This Ang II-induced upregulation of NLRP3 inflammasomes in macrophages was attributed to lysosomal damage and release of cathepsin B. Mechanistically, losartan, a nonpeptide Ang II receptor antagonist, decreased Ang II-induced NLRP3 inflammasome activation, lysosomal membrane permeability, lysosomal cathepsin B release, and macrophage digestion dysfunction. Similarly, Ang II-induced macrophage microbe digestion and NO production, which were blocked by ATI gene silencing. In addition, in vivo experiments showed that the bacteria scavenging function was clearly decreased in macrophages from Ang II-induced hypertensive mice. Conclusion: Angiotensin II enhances lysosomal membrane permeabilization and the consequent release of lysosomal cathepsin B, resulting in activation of the macrophage NLRP3 inflammasome. This may contribute to NO mediation of dysfunction in digesting microbes

    lncRNA-TINCR Functions as a Competitive Endogenous RNA to Regulate the Migration of Mesenchymal Stem Cells by Sponging miR-761

    No full text
    Mounting evidences have indicated that terminal differentiation-induced lncRNA (TINCR) contributes to various cellular processes, such as proliferation, apoptosis, autophagy, migration, invasion, and metastasis. However, the function of TINCR in regulating migration of MSCs is largely unknown. In this study, the effects of TINCR on the migration of rat MSCs from the bone marrow were studied by Transwell assays and wound healing assays. Our results suggested that TINCR positively regulated migration of rMSCs. miR-761 mimics suppressed rMSC migration, whereas miR-761 inhibitor promoted migration. Target prediction analysis tools and dual-luciferase reporter gene assay identified Wnt2 as a direct target of miR-761. miR-761 could inhibit the expression of Wnt2. Further, the investigation about the function of TINCR in miR-761-induced migration of rMSCs was completed. These results demonstrated that TINCR took part in the regulation of miR-761-induced migration in rMSCs through the regulation of Wnt2 and its Wnt2 signaling pathway. Taken together, our results demonstrate that lncRNA-TINCR functions as a competitive endogenous RNA (ceRNA) to regulate the migration of rMSCs by sponging miR-761 which modulates the role of Wnt2. These findings provide evidence that lncRNA-TINCR has a chance to serve as a potential target for enhancing MSC homing through the miR-761/Wnt2 signaling pathway
    corecore