14 research outputs found

    Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Zea nicaraguensis during gravistimulation

    Get PDF
    Auxin distribution is essential for determining root developmental patterns. The formation of lateral roots and constitutive aerenchyma, which is a gas space developed through cell death, is regulated by auxin in rice (Oryza sativa). However, it is unclear whether the involvement of auxin in constitutive aerenchyma formation is conserved in other species. In this study, we found that constitutive aerenchyma formation was regulated by auxin in the nodal roots of Zea nicaraguensis, a wild relative of maize (Zea mays ssp. mays) grown naturally on frequently flooded coastal plains. Subsequent gravistimulation (root rotation) experiments showed opposite patterns of aerenchyma and lateral root formation. Lateral root formation on the convex side of rotated roots is known to be stimulated by a transient increase in auxin level in the pericycle. We found that aerenchyma formation was accelerated in the cortex on the concave side of the rotated nodal roots of Z. nicaraguensis. A cortex-specific expression analysis of auxin-responsive genes suggested that the auxin level was higher on the concave side than on the convex side. These results suggest that asymmetric auxin distribution underlies the regulation of aerenchyma and lateral root formation in the nodal roots of Z. nicaraguensis. As aerenchyma reduces the respiratory cost of the roots, constitutive aerenchyma on the concave side of the nodal root may balance resource allocation, thereby contributing to the uptake of water and nutrients by newly formed lateral roots. Our study provides insights into auxin-dependent asymmetric root patterning such as that of gravistimulation and hydropatterning response

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Stable isotope metabolic labeling-Based quantitative phosphoproteomic analysis of arabidopsis mutants reveals ethyleneregulated time-Dependent phosphoproteins and putative substrates of constitutive triple response 1 kinase

    No full text
    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethyleneregulated phosphosites using the group-based prediction system with a protein-protein interaction filter revealed a total of 14 kinase-substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethyleneregulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light harvesting chlorophyll A/B binding protein 1.1, and flowering bHLH 3 proteins in a dual-and-opposing fashion. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc

    Biodegradable Peptide Polymers as Alternatives to Antibiotics Used in Aquaculture

    No full text
    The pressure of antimicrobial resistance has forced many countries to reduce or even prohibit the use of antibiotics in feed. Therefore, it is in urgent need to develop alternatives to antibiotics to control infectious diseases in feed and aquaculture. To address this long-lasting challenge, we prepared peptide polymers that display potent and broad-spectrum activity against common pathogenic bacteria in aquaculture, low hemolysis and low cytotoxicity, and doesn’t induce bacteria to develop resistance or cross resistance to antibiotics. The optimal peptide polymer demonstrates strong in vivo therapeutic potential in an adult zebrafish infection model. Moreover, the optimal peptide polymer is biodegradable by enzyme into single amino acids and dipeptides to totally lose antibacterial activity and, therefore, will not cause antimicrobial selective pressure. Our study suggests that peptide polymers are promising alternatives to antibiotics in aquaculture and open new avenues to address the global challenge of antimicrobial resistance

    Polarization-Resolved Near-Infrared PdSe<sub>2</sub> p‑i‑n Homojunction Photodetector

    No full text
    Constructing high-quality homojunctions plays a pivotal role for the advancement of two-dimensional transition metal sulfide (TMDC) based optoelectronic devices. Here, a lateral PdSe2 p-i-n homojunction is constructed by electrostatic doping. Electrical measurements reveal that the homojunction diode exhibits a strong rectifying characteristic with a rectification ratio exceeding 104 and an ideality factor approaching 1. When functioning in photovoltaic mode, the device achieves a high responsivity of 1.1 A/W under 1064 nm illumination, with a specific detectivity of 1.3 × 1011 Jones and a high linearity of 45 dB. Benefiting from the lateral p-i-n structure, the junction capacitance is significantly reduced, and an ultrafast response (3/6 μs) is obtained. Additionally, the photodiode has the capability of polarization distinction due to the unique in-plane anisotropic structure of PdSe2, exhibiting a dichroic ratio of 1.6 at a 1064 nm wavelength. This high-performance polarization-sensitive near-infrared photodetector exhibits great potential in the next-generation optoelectronic applications

    Introducing d‑Amino Acid or Simple Glycoside into Small Peptides to Enable Supramolecular Hydrogelators to Resist Proteolysis

    No full text
    Here we report the examination of two convenient strategies, the use of a d-amino acid residue or a glycoside segment, for increasing the proteolytic resistance of supramolecular hydrogelators based on small peptides. Our results show that the introduction of d-amino acid or glycoside to the peptides significantly increases the resistance of the hydrogelators against proteinase K, a powerful endopeptidase. The insertion of d-amino acid in the peptide backbone, however, results relatively low storage moduli of the hydrogels, likely due to the disruption of the superstructures of the molecular assembly. In contrast, the introduction of a glycoside to the C-terminal of peptide enhances the biostability of the hydrogelators without the significant decrease of the storage moduli of the hydrogels. This work suggests that the inclusion of a simple glycogen in hydrogelators is a useful approach to increase their biostability, and the gained understanding from the work may ultimately lead to development of hydrogels of functional peptides for biomedical applications that require long-term biostability

    Enhanced Superconductivity and Critical Current Density Due to the Interaction of InSe<sub>2</sub> Bonded Layer in (InSe<sub>2</sub>)<sub>0.12</sub>NbSe<sub>2</sub>

    No full text
    Superconductivity was discovered in (InSe2)xNbSe2. The materials are crystallized in a unique layered structure where bonded InSe2 layers are intercalated into the van der Waals gaps of 2H-phase NbSe2. The (InSe2)0.12NbSe2 superconductor exhibits a superconducting transition at 11.6 K and critical current density of 8.2 × 105 A/cm2. Both values are the highest among all transition metal dichalcogenide superconductors at ambient pressure. The present finding provides an ideal material platform for further investigation of superconducting-related phenomena in transition metal dichalcogenides
    corecore