94 research outputs found

    Prevalence and related factors of child Posttraumatic Stress Disorder during COVID-19 pandemic:A systematic review and meta-analysis

    Get PDF
    Background: The COVID-19 pandemic has drastically impacted many aspects of society and has indirectly produced various psychological consequences. This systematic review aimed to estimate the worldwide prevalence of posttraumatic stress disorder (PTSD) in children due to the COVID-19 pandemic, as well as to identify protective or risk factors contributing to child PTSD. Methods: We conducted a systematic literature search in the PubMed, ProQuest, PsycINFO, Embase, Web of Science, WanFang, CNKI, and VIP databases. We searched for studies published between January 1, 2020 and May 26, 2021, that reported the prevalence of child PTSD due to the COVID-19 pandemic, as well as factors contributing to child PTSD. Eighteen studies were included in our systematic review, of which 10 studies were included in the meta-analysis. Results: The estimated prevalence of child PTSD after the COVID-19 outbreak was 28.15% (95% CI: 19.46–36.84%, I subgroup analyses for specific regions the estimated prevalence of post-pandemic child PTSD was 19.61% (95% CI: 11.23–27.98%) in China, 50.8% (95% CI: 34.12–67.49%) in the USA, and 50.08% in Italy (95% CI: 47.32–52.84%). Conclusions: Factors contributing to child PTSD were categorized into four aspects: personal factors, family factors, social factors and infectious diseases related factors. Based on this, we presented a new framework summarizing the occurrence and influence of the COVID-19 related child PTSD, which may contribute to a better understanding, prevention and development of interventions for child PTSD in forthcoming pandemics

    Long Short-Term Sample Distillation

    Full text link
    In the past decade, there has been substantial progress at training increasingly deep neural networks. Recent advances within the teacher--student training paradigm have established that information about past training updates show promise as a source of guidance during subsequent training steps. Based on this notion, in this paper, we propose Long Short-Term Sample Distillation, a novel training policy that simultaneously leverages multiple phases of the previous training process to guide the later training updates to a neural network, while efficiently proceeding in just one single generation pass. With Long Short-Term Sample Distillation, the supervision signal for each sample is decomposed into two parts: a long-term signal and a short-term one. The long-term teacher draws on snapshots from several epochs ago in order to provide steadfast guidance and to guarantee teacher--student differences, while the short-term one yields more up-to-date cues with the goal of enabling higher-quality updates. Moreover, the teachers for each sample are unique, such that, overall, the model learns from a very diverse set of teachers. Comprehensive experimental results across a range of vision and NLP tasks demonstrate the effectiveness of this new training method.Comment: published as a conference paper at AAAI 202

    Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica

    Get PDF
    The basic helix-loop-helix (bHLH) family is one of the most well-known transcription factor families in plants, and it regulates growth, development, and abiotic stress responses. However, systematic analyses of the bHLH gene family in Prunus sibirica have not been reported to date. In this study, 104 PsbHLHs were identified and classified into 23 subfamilies that were unevenly distributed on eight chromosomes. Nineteen pairs of segmental replication genes and ten pairs of tandem replication genes were identified, and all duplicated gene pairs were under purifying selection. PsbHLHs of the same subfamily usually share similar motif compositions and exon-intron structures. PsbHLHs contain multiple stress-responsive elements. PsbHLHs exhibit functional diversity by interacting and coordinating with other members. Twenty PsbHLHs showed varying degrees of expression. Eleven genes up-regulated and nine genes down-regulated in −4°C. The majority of PsbHLHs were highly expressed in the roots and pistils. Transient transfection experiments demonstrated that transgenic plants with overexpressed PsbHLH42 have better cold tolerance. In conclusion, the results of this study have significant implications for future research on the involvement of bHLH genes in the development and stress responses of Prunus sibirica

    Regulation of NDVI and ET negative responses to increased atmospheric vapor pressure deficit by water availability in global drylands

    Get PDF
    Atmospheric vapor pressure deficit (VPD, indicative of atmospheric water conditions) has been identified as a major driver of global vegetation dynamics. Drylands, including deserts, temperate grasslands, savannas, and dry forests, are more sensitive to water conditions and affect carbon, nitrogen, and water cycles. However, our knowledge is limited on the way increasing VPD affects vegetation growth and evapotranspiration (ET) in global drylands. In this study, we used long-term satellite datasets combined with multiple statistical analyses to examine the relationship between the satellite-derived normalized difference vegetation index (NDVI), a proxy for vegetation growth, and ET to VPD across global drylands. We found that significant decreases in NDVI and ET predominantly influenced the NDVI (RVPD − NDVI) and ET (RVPD − ET) responses to VPD in both the savannas and dry forests of South American, African, and Australian savannas and dry forests, as well as in temperate grasslands (e.g., Eurasian steppes and American prairies). Notably, more than 60% of global drylands exhibited significantly negative RVPD − NDVI and RVPD − ET values. In contrast, the percentage of significantly negative RVPD − NDVI and RVPD − ET decreased to <10% in cold drylands (>60° N). In predominantly warm drylands (60° N~60° S), negative VPD effects were significantly and positively regulated by soil water availability, as determined by multiple linear regression models. However, these significant regulatory effects were not observed in cold drylands. Moving-window analyses further revealed that temporal changes in RVPD − NDVI and RVPD − ET were positively correlated with changes in the Standardized Precipitation Evapotranspiration Index (SPEI). In warm drylands, areas with increasing RVPD − NDVI and RVPD − ET over time showed an increasing trend in the SPEI, whereas areas with a decreasing SPEI showed a negative trend in RVPD − NDVI and RVPD − ET values over time. Given the increasing atmospheric dryness due to climate change, this study highlighted the importance of re-evaluating the representation of the role of water availability in driving the response of the carbon-water cycle to increased VPD across global drylands

    Inhalation of Hydrogen Attenuates Progression of Chronic Heart Failure via Suppression of Oxidative Stress and P53 Related to Apoptosis Pathway in Rats

    Get PDF
    Background: Continuous damage from oxidative stress and apoptosis are the important mechanisms that facilitate chronic heart failure (CHF). Molecular hydrogen (H2) has potentiality in the aspects of anti-oxidation. The objectives of this study were to investigate the possible mechanism of H2 inhalation in delaying the progress of CHF.Methods and Results: A total of 60 Sprague-Dawley (SD) rats were randomly divided into four groups: Sham, Sham treated with H2, CHF and CHF treated with H2. Rats from CHF and CHF treated with H2 groups were injected isoprenaline subcutaneously to establish the rat CHF model. One month later, the rat with CHF was identified by the echocardiography. After inhalation of H2, cardiac function was improved vs. CHF (p < 0.05), whereas oxidative stress damage and apoptosis were significantly attenuated (p < 0.05). In this study, the mild oxidative stress was induced in primary cardiomyocytes of rats, and H2 treatments significantly reduced oxidative stress damage and apoptosis in cardiomyocytes (p < 0.05 or p < 0.01). Finally, as a pivotal transcription factor in reactive oxygen species (ROS)-apoptosis signaling pathway, the expression and phosphorylation of p53 were significantly reduced by H2 treatment in this rat model and H9c2 cells (p < 0.05 or p < 0.01).Conclusion: As a safe antioxidant, molecular hydrogen mitigates the progression of CHF via inhibiting apoptosis modulated by p53. Therefore, from the translational point of view and speculation, H2 is equipped with potential therapeutic application as a novel antioxidant in protecting CHF in the future

    NudC L279P Mutation Destabilizes Filamin A by Inhibiting the Hsp90 Chaperoning Pathway and Suppresses Cell Migration

    Get PDF
    Filamin A, the first discovered non-muscle actin filament cross-linking protein, plays a crucial role in regulating cell migration that participates in diverse cellular and developmental processes. However, the regulatory mechanism of filamin A stability remains unclear. Here, we find that nuclear distribution gene C (NudC), a cochaperone of heat shock protein 90 (Hsp90), is required to stabilize filamin A in mammalian cells. Immunoprecipitation-mass spectrometry and western blotting analyses reveal that NudC interacts with filamin A. Overexpression of human NudC-L279P (an evolutionarily conserved mutation in NudC that impairs its chaperone activity) not only decreases the protein level of filamin A but also results in actin disorganization and the suppression of cell migration. Ectopic expression of filamin A is able to reverse these defects induced by the overexpression of NudC-L279P. Furthermore, Hsp90 forms a complex with filamin A. The inhibition of Hsp90 ATPase activity by either geldanamycin or radicicol decreases the protein stability of filamin A. In addition, ectopic expression of Hsp90 efficiently restores NudC-L279P overexpression-induced protein stability and functional defects of filamin A. Taken together, these data suggest NudC L279P mutation destabilizes filamin A by inhibiting the Hsp90 chaperoning pathway and suppresses cell migration

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe
    corecore